Swiss Federal Institute of Technology Lausanne
Department of Computer Science

Diploma Work Report
A Formal Specification for a Real-Time
Train Controller

Simon Kramer*

February 19, 2001

computer: ’
scien
department

*is at the Swiss Federal Institute of Technology Lausanne (EPFL), Switzerland and
has carried out the present work during a stage at the Politecnico di Milano, Italy.
The work has been supervised by Prof. Dino Mandrioli on the side of the Politecnico
di Milano and by Prof. Martin Odersky on the side of the EPFL.

Abstract

We give a formal specification for a real-time controller for trains that operate
on the Italian railway network. The Controller will control train movement and
is part of a larger system destined to guarantee safety with respect to dangers
originating from train traffic in the railway network.

Based on an informal specification document from the Italian railway com-
pany, we construct a simple state-based model and formalise it in terms of the
property-based specification language TRIO. The obtained specification being
formal, we are able to perform certain verifications on it, such as checking its
satisfiability and verifying correctness of refinement steps.

Contents

About this Document

I Prologue
1 Introduction
1.1 AReal-World Case
1.2 Problem, Goal, Task
2 Methodology
2.1 Approach
2.2 Formalism e e e e e e
2.2.1 Description
2.2.2 Use . . . i e e e e e
2.3 Formalisation Guidelines
24 Conventions oo o
241 Lexical.
2.4.2 Syntactical o
2.4.3 Semantico
3 Extent
3.1 SCOPE . . e e e e
3.2 Abstraction Hierarchy

II The Specification

4 Formalisation
4.1 Abstract Model Skeleton
4.2 Inconsistency Predicate,
4.2.1 Specification Process L.
4.2.2 Specification Sourceso L.
4.2.3 Specification Layout
4.2.4 Specification Schemata
4.2.5 Specificationso
426 Explicitly It o o

12

13
13
13
14
15
16
17
17
18
19

20
20
21

5 Verifications
5.1 About the Specification L0
5.2 Within the Specification 0oL,
5.2.1 Proof System
522 Proofs

6 Modularisation

IIT Epilogue
7 Beyond the Specification

8 Conclusion
81 Discussion
82 Further Work

A Original Specification Document Table of Contents

Bibliography

33
33
34
34
35

39

41
42

44
44
45

46

57

List of Tables

2.1

4.1
4.1
4.2

5.1

From Model Terms to Specification Terms 17
Requirement-Design Pairs for Speed Decrease 30
Requirement-Design Pairs for Speed Decrease 31
Requirement-Design Pair for Speed Increase 31

Requirement and Assumption Formulae: Syntactical Differences . 36

List of Figures

1.1
1.2

2.1
2.2

3.1

4.1

6.1

Abstract System Model 9
Data Space e 11
Specification Schema Layout 18
Requirement-Design Pair(s) Table Layout 19
Behaviour Classes 21
Event Classes 27
A Layered Data Model for Internal States 40

List of Specification Schemata

1 General Action Pattern for Speed Reduction 28
2 General Action Pattern for Speed Increase 29

List of Proofs

1 Refinement Correctness for Speed Decrease Designs
2 Refinement Correctness for Speed Increase Designs

About this Document

The present document is structured at three different levels. At the top level of
the sectioning hierarchy, we make a logical distinction as well as a distinction
related to the different project phases our work has gone through.

The project phases map in order to the three parts ‘Prologue’, “The Specifi-
cation’ and ‘Epilogue’. In the first part, we introduce the reader to the problem
domain, explain how we intend to solve the problem, and, within the problem
domain, carve out the sub-domain that we intend to address in this document.
We give a solution to our problem in the second part, and finally consider the
solution in its context in the third part.

The logical distinction separates the parts that contain information about
the specification (‘Prologue’ and ‘Epilogue’) from the part that contains the
proper specification itself.

At the next deeper level of our section hierarchy, we develop the process-
related issues of our work, and by doing so, gradually produce the desired results.
So, results are situated at the bottom of the sectioning hierarchy.

The reason for the chosen document structure is that by subordinating
process-related issues to the distinction of meta and object level in the spec-
ification problem, we have separated problem- or case-specific information (the
specification) from general and project-related information. This is useful if, for
example, we want to present our specification as a case study among others that
use the same notations and conventions.

Part 1

Prologue

Chapter 1

Introduction

1.1 A Real-World Case

We are addressing the problem of specifying formally a real-time controller for
trains that operate on the Italian railway network. The controller will control
train movement and is part of a larger system destined to guarantee safety with
respect to dangers originating from train traffic in the railway network?!.

Our work is part of a joint project undertaken by the Italian national railway
company (Ferrovie dello Stato, FS), the Politecnico di Milano, and the three
industrial partners ADtranz, Alsthom and Ansaldo, which are charged with the
implementation of the complete system.

In order to get an overall understanding of the system, we first consider it
from a model-based or extensional point of view by defining an abstract model
(see Figure 1.1) for it. For this purpose, we define the term Environment to
refer to the train and its physical context such as tracks, light signals and other
trains. The Environment can generate an ezternal event, which is intended to be
captured by the train controller (Controller). The Controller may react to the
external event by executing a specific action in the domain of the Environment.

internal event

external event

Environment i —> Controller
/\ action/function
context train context train
state state

Figure 1.1: Abstract System Model

An external event conveys data to the Controller, which uses the data for up-
dating two internal states (contezt state and train state). Updating is performed

In Chapter 7, we will see that the Controller is not only physically a part of the larger
system, but also logically — with respect to system properties such as safety

by generating internal events. The same kind of events is generated for carrying
out calculations that may precede the issuing of actions by the Controller.

We refine our model by giving an abstract implementation of the external
behaviour of the Controller in terms of its internal states. We also use inter-
nal states for defining a reaction policy for the Controller. The Controller is
supposed to act accordingly when considering reaction to external events:

Definition 1 (Event Reaction Policy) The Controller reacts to an external
event if and only if the train state is inconsistent with the context state.

The notion of inconsistency can be expressed by defining a predicate. In
fact, the definition of this predicate corresponds exactly to the specification of
the functional requirements for our train controller (see Requirement 2 as an
example of a non-functional requirement.). Further, the inconsistency predicate
enables us to define the concept of a scenario, which is an instance of a so called
controller history:

Definition 2 (Controller History) A controller history is defined to be a
sequence of pairs (¢sg,tsg), . - ., (¢Sn, ts,) such that:

e csg denotes the first context state and tsy denotes the first train state
before the occurrence of some internal state update, and

e s, denotes the first context state and ts,, denotes the first train state
after some later occurrence of an internal state update

Thus, a controller history is compatible with a totally-ordered linear time
structure? that may have a beginning and an end. Moreover, the time structure
is discrete and can be considered to be induced by the update activity of the
Controller.

Definition 3 (Scenario) A scenario is defined to be a controller history for
which the inconsistency predicate is false for the first and last pair, and true for
all other pairs in the history.

Let us now consider the system from a property-based or intensional point of
view by focusing on its purpose, i.e., guaranteeing safety in the railway network.
As far as the Environment is concerned, we are obliged to consider it as a black-
box and express its properties as assumptions. This is because we only control
the train but not the context. As a consequence, we must presume some intuitive
understanding of terms that actually belong to the domain of the Environment
but which we are going to use in our considerations. Such terms are enclosed
in quotation marks (). Finally, once the assumptions have been expressed,
we will be able to derive from them some first (informal) requirements for the
Controller.

2not to be confused with the time domain of the formalism we are going to use (see
Section 2.2)

10

Assumption 1 (Event Emission) The Environment generates sufficiently
many and meaningful events for the Controller so that the latter is able to
reproduce an ‘adequate’ representation of the Environment in its internal states.
Moreover, the Environment generates all external events in such a way that the
Controller is able to capture them at the ‘right’ time and at the ‘right’ place.

Assumption 2 (Event Transmission) No external events, nor actions, are
lost or altered in the transmission medium.

Requirement 1 (Receptivity) The Controller must be receptive for external
events at any time.

Requirement 2 (Reactivity) The Controller must react, i.e., take actions
within some ‘strict’ time bounds. This means that for each Controller activity
(updating of internal states, calculations) we must define such a time bound,
which may also depend on the actual internal states of the Controller.

Requirement 3 (Functionality) The Controller must comply exactly with
the above stated event reaction policy, i.e., the Controller must correctly imple-
ment the inconsistency predicate (to be defined).

Let us now adopt an information-based point of view of our system and
look what different types of information values circulate in it, and see if we can
classify them.

We can derive the principal types of information values from the fact that the
Controller controls train movement. Train movement is defined by the direction
of movement (forward or backward with respect to the orientation of the train),
train speed, acceleration and deceleration. We call them the Four Controlled
Physical Quantities, 4CPQ.

From the fact that events convey data, i.e., information values, and the fact
that the Controller must be operational for different types of trains, we derive
a classification of information values: there is (external) data originating from
two spatially different sources (train and context), and at two different times
(configuration and operation). Thus, events induce a two dimensional data

space (see Figure 1.2).
/Data\
spa?de%dent tht

context train operation configuration

Figure 1.2: Data Space

11

1.2 Problem, Goal, Task

Our problem is specifying a real-time train controller. The goal obviously is
to finally have this specification, and the verifications we can perform on it, in
hand. Our task is to find out how to accomplish the goal, and to document the
answers found. For this reason, this document contains process-oriented as well
as result-oriented parts.

Having accomplished our task, we will be able to look a bit beyond the scope
of our goal, and say a word about the relation between the Controller and the
context as far as safety in the railway network, the ultimate concern of the joint
project, is concerned.

12

Chapter 2

Methodology

2.1 Approach

Our work is situated at the very beginning of a large industrial project and
thus involves naturally some preliminary exploring of the problem domain (see
Section 1.1). The exploration scrutinises a large amount of informal information
we have received from the Italian railway company (see Appendix A for an
overview of that information, which is contained in [6], [7] and [8]).

The approach consists in first reading and understanding as well as possi-
ble this information. From this information, we then extract what we consider
relevant for accomplishing our task. We will judge it necessary to develop a
new framework for the extracted information, which will make necessary the
restructuring of the original information and the introduction of some new con-
cepts. We call this new framework system model. Since we want to obtain a
formal specification, we proceed by formalising the system model and perform-
ing relevant verifications on the specification. Finally, we will be able to group
individual specifications into modules, which is what will accomplish our task.

2.2 Formalism

We use the declarative TRIO formalism as well as its extension TRIOT as the
specification language for expressing the properties of our Controller!. The
following short introduction to the formalism focuses on TRIO and addresses
TRIO™ only very briefly, assuming that the reader is already familiar with
object-oriented concepts.

The presentation of the formalism is informal and mainly syntactic. It is
based on [4]. For a formal presentation of TRIO, in particular of its semantic
foundations, we refer the reader to [3].

1Due to the declarative nature of TRIO, resulting specifications are pure data. Declarative
formalisms are therefore considered less suitable for expressing control on data than opera-
tional formalisms, which provide such control by construction (see [1] for an axiomatisation
of the operational formalism of Petri nets in terms of TRIO).

13

2.2.1 Description
2.2.1.1 TRIO

TRIO is a first-order temporal logic intended to be used for the specification of
real-time systems. It provides support to a variety of validation techniques like
specification testing, simulation, and property proof. TRIOT adds the ability
to construct specifications of complex systems in a systematic and modular
way using constructs for hierarchical system decomposition and object-oriented
concepts like inheritance and genericity.

The ingredients of a TRIO formula are variable, function, and predicate
names; the propositional connectors — and —, as well as the derived ones A, V,
+, etc; and the quantifiers 3 and V.

Variables, functions and predicates may be time-dependent (TD) or time-
independent (TT). Moreover, TRIO is a typed language defining suitable do-
mains for variables (domain of legal values), functions (domain-range pair) and
predicates (a domain of legal values for each argument). For variables, there is
the distinguished temporal domain, which may be a domain of integers, rationals
or reals.

A TRIO formula is constructed in the usual inductive way. A term is either
a variable name or a function name followed by a possibly empty list of terms of
the correct type. An atomic formula is a predicate name followed by a possibly
empty list of terms of the correct type. A formula is either a term or several
atomic formulae linked by logical connectors.

There are two predefined primitive temporal operators Past and Futr. The
value of Futr(f, A), resp. Past(f, A), is the value of the formula f at a distance
of A time units in the future, resp. past, with respect to the current time instant
(left implicit). In our specifications, we will use two more temporal operators,
which are defined in terms of Futr, resp. Past:

WithinF(f, A) 2 3(A’ < A)(Futr(f, A"))

WithinP(f, A) 2 3(A" < A)(Past(f, A))

As in classical first-order logic, one can define the concepts of satisfiability
and validity of a TRIO formula, with respect to suitable interpretations. Based
on an interpretation S, an evaluation function S;(f) is defined that assigns a
truth value to any formula f of the language at any time instant ¢ of the temporal
domain T'.

A TRIO formula f is said to be temporally satisfiable in an interpretation S
if S;(f) = true for some i € T. In such a case, we say that the interpretation
constitutes a model for the formula. A formula is said to be temporally valid if
it is true in every time instant of the temporal domain. Finally, a TRIO formula
is said to be time invariant if it either is temporally valid, or cannot be satisfied
in any interpretation.

A TRIO formula is classically closed if all of its (time-independent) variables
are quantified; it is temporally closed if it does not contain time-dependent vari-
ables or predicates, if it has either Som (‘at some instant in the past or the
future’) or Alw (‘at every instant in the past and the future’) as the outermost

14

operator, or, finally, if it results from the propositional composition or classical
closure of temporally closed formulae. It can be proven that any temporally
closed formula is time invariant; this can be understood intuitively by consid-
ering that the operators Som and Alw provide a way to quantify existentially
resp. universally the current time. For this reasons, we define a specification of
a system as a TRIO formula that is closed, both classically and temporally.

2.2.1.2 TRIO*

A TRIOT specification is built by defining suitable classes. A class is a set of
TRIO axioms describing the system to be specified. Classes may be simple or
structured, may be generic, and may be organised in inheritance hierarchies.

A simple class is a group (body) of TRIO axioms, preceded by the declaration
(header) of all occurring predicates, variables, and functions. Structured classes
are classes that have components, called modules. A class may not be used
to declare its own modules, neither directly nor indirectly, so recursive class
definitions are ruled out. The temporal domain must be the same for a class
and for its modules.

An instance of a class is a model for the axioms of the class, i.e., an inter-
pretation for all entities that have been declared in the header, such that all
axioms are true. A class declaration is thus the intensional representation of all
its models, and an object of the class is identified with the entire history of its
evolution or, in other terms, by the series of values of its state variables. Mod-
ules may not be used directly in axioms because they are not logical symbols
such as variable, function or predicate names.

2.2.2 Use

We are going to use TRIO formulae for expressing different kinds of properties
in our specification process, i.e., requirements, assumptions, and designs.

Requirements

A requirement is according to [11] a “property expected of the system”. And it
“is expressed as a constraint over the system behaviours, i.e., the states of the
system over time”.

It is reasonable to look at the specification of our Controller as a set of re-
quirements, at least in the first place. The set should be checked for satisfiability
because an implementation (a program) for a set of logical formulae exists if and
only if the set is satisfiable.

There are different kinds of requirements. For example, we can have func-
tional and non-functional requirements as well as safety and utility requirements.
Functional requirements specify operations of the system — non-functional re-
quirements don’t, they describe other properties of the system such as timing
constraints. Safety requirements express properties that the system must have
in order to guarantee safety in some well-defined sense. Utility requirements im-
prove system performance, they do not add any new operations to the system
specification.

15

Assumptions

In Section 1.1 we have already made some (informal) assumptions. Assump-
tions about some subsystem must be made whenever the subsystem escapes our
control. This is to guarantee a safe and valid requirements formalisation. Also,
[11]:

For a design to implement a requirement it is necessary to make
assumptions about both the environment in which the system will
operate and the physical properties of the implementation.

Designs

With requirements and assumptions we do only state what properties we want
the system to have, resp. what properties we assume the environment of the
system to have. We can refine our system specification in a subsequent phase
of designs. According to [11] this “involves making choices and taking decisions
about how requirements are to be met”.

The last phase in a specification process is the implementation of the system
specification. However, this is beyond the scope of this work. In such a phase,
we would have to talk about control plans and scheduling issues such as priority
policies etc.

Verification and Validation

TRIO has a proof system, which is described in [1]. It allows verification of the
correctness of a refinement step made in the process of specification refinement.
A refinement step consists in the derivation of a design from a requirement, and
possibly of some assumptions. Correctness of a refinement step is defined as
follows (see [11]):

Definition 4 (Refinement Step Correctness) Let D;,...,D; denote
designs, A;,..., A; assumptions, and R; a requirement. Then correctness is
defined to be a ternary relation between the set of all possible designs, the set
of all possible assumptions and the set of all possible requirements such that
(DiN...AD;jAN...NA; N...NA;) > R;

Thus, proving correctness of a refinement step is the same as proving a logical
implication. However, it is not sure that all such implications may be proven
with the proof system: since it provides a metric on time, the proof system is
necessarily incomplete.

Validity of a specification can be examined using history checking, which
is described in [2]. Specification validation must, of course, be made together
with the client of the specified system, since only the client can judge if the
specification actually meets his intention of the desired system.

2.3 Formalisation Guidelines

We formalise our abstract system model in two steps: first, we formalise its
macro behaviour, sketched out informally in Section 1.1 and call the result

16

abstract model skeleton. This is done in Section 4.1. Second, we formalise
the micro behaviour and explicit the inconsistency predicate. This is done in

Section 4.2.

The formalisation basically consists in finding a mapping between model-
related terms and specification-related terms. In [2] we finde some indications
on how this is accomplished in the general case (see Table 2.1):

Model Term

| Specification Term |

table relations among them

physical components and immu-

individual constants, TI
predicates

temporary relations, events

TD predicates

tities subject to change

values, measures of physical quan-

TD variables

system

predefined fixed operations of the

functions

properties of the specified system

TI variables

Table 2.1: From Model Terms to Specification Terms

In our case, this means that events and actions will be expressed as time-
dependent predicates, and that each internal state will be formed by a set of
variables, whose values may be generated by functions.

2.4 Conventions

2.4.1 Lexical

We give the regular expressions describing the lexema that express in the forth-

coming specifications the concepts that are specific to our model.

The name

descriptions are typeset in the same font as will be the corresponding concept

names. Meta symbols are ‘(’, ¢)’, ‘:=" and ‘.
(Name) ::= (AlphabeticCharacter)t
(Predicate Name) ::= (Name)
(Event Name) ::= (Predicate Name)t
(Clearing Event Name) ::= (Event Name)
(Action Name) ::= (Predicate Name),
(Variable Name) ::= (Name)
(Function Name) ::= (Name)
(Type Name) ::= (Name)
(String Value) ::= (Name)
(Set Name) ::= (NAME)

Terms of the inconsistency predicate will gradually appear as we write down

the specifications for our Controller.

A term t of the inconsistency predicate

will be surrounded by a frame, just like: .

We adopt the following naming conventions for name descriptions, i.e., full
names: event name descriptions will be such that a nominal part precedes a past
particle, and action name descriptions will be such that a verb in imperative
mode precedes a nominal part.

2.4.2 Syntactical

During specification development, we will use so-called specification schemata
and so-called requirement-design tables. A specification schema is a tabular
presentation of some generic specification. The specification is generic in the
sense that it has a list of formal parameters associated to it, which can be
assigned to a list of actual parameters to generate a concrete (parameterless)
specification.

Figure 2.1 shows the layout of a specification schema. There is a field for
the specification schema name, (Name), used as the symbol refering to the field
(Specification), which will contain a set of TRIO formulae. The field (Full
Name) gives a name description for the field (Name), the field (Abstract) will
contain a short description of the concern of the specification schema, the field
(Specification Alphabet) will give the definitions of all the symbols (event, ac-
tion, variable and function names) that are used in the formulae of the field
(Specification), and the field (Informal Description) will contain an explanation
of the intension created by the formulae of the field (Specification). We draw
the reader’s attention to the fact that every such formula has to be thought of
as being embraced by the operator Alw.

(Name) | (Full Name)

(Abstract)

(Specification Alphabet)

(Informal Description)

(Specification)

Figure 2.1: Specification Schema Layout

When instantiating specification schemata, which are actually sets of predi-
cates, although we write them as if they were predicates, we will sometimes also
use so-called conditional aziom definitions, i.e., axioms that are only ‘there’
when some condition holds.

Definition 5 (Conditional Axiom Definition) Let ¢ be some condition,
and {p1,...,pn} a set of predicates, for example an instance of a specification

18

schema. Then the conditional axiom definition operator = is defined as follows:

def
C#{pl,---,pn} = C_>/\{p17"'7pn}

© e LA Apn

Figure 2.2 shows the layout of a requirement-design table, which is meant to
visualise the relation between some requirement and the designs that are derived
from it. Since specification development is a step-wise process, designs can in
their turn become requirements, where from some other design(s) can again be
derived.

(Requirement)

(Design;)

(Designy,)

Figure 2.2: Requirement-Design Pair(s) Table Layout

2.4.3 Semantic

Definition 6 (Event or Action Predicate) If an event or action predicate
is true at a certain moment ¢, then it has been false just before ¢ and will be
false just after ¢. Thus, events and actions are always time-dependent (TD)
predicates.

Events are supposed to originate from sensors and indicate a significant
change of value in some time-dependent variable. Such a variable contains actual
values, i.e., values that are measured by some sensor.

Actions are destined to be carried out by actors, which may read some
prescribed value from some time-independent variable.

Updates to a variable are supposed to have happened when the associated
external event predicate becomes true. This means that we make abstraction
of internal events. Moreover, updates to variables that refer to some mode are
silent, i.e., they do not cause the creation of an external event.

19

Chapter 3

Extent

Our specification extends in two dimensions, i.e., in breadth and in depth. We
call the specification breadth scope and the specification depth abstraction hi-
erarchy. Scope answers the question “How much does the specification cover?”
whereas with an abstraction hierarchy we answer the question “How detailed is
the specification?”.

3.1 Scope

The specification covers the normal behaviour of the implemented Controller.
The latter is supposed to consist of a control logic (hardware loaded with the
control program) and a peripheral system (sensors, actors and the subsystem
connecting them with the control logic), which also consists of hardware. The
Controller behaves normally if and only if there is neither a hardware defect in,
nor an external source of disturbance (electro-magnetic radiation, for example)
acting on, neither the control logic nor its peripheral system.

Abnormal behaviour is not covered in our specification. According to [11],
abnormal behaviour can be divided into exceptional and catastrophic behaviour.
Normal behaviour together with exceptional behaviour defines acceptable be-
haviour (see Figure 3.1), which is the behaviour that does not violate safety
requirements. On the other hand, catastrophic behaviour does violate safety
requirements, which is, of course, unacceptable.

We see that abnormal behaviour is actually due to the existence of hardware,
which is also the reason why our specification does not cover it because the
hardware to be used is not known to us and, also, because the covering of
abnormal behaviour lies beyond the scope of this work.

Some of the abnormal behaviour, i.e., exceptional behaviour, we are able to
manage, i.e., ensure the safety requirements in spite of its existence by making
appropriate failure hypotheses (see [11]). In case of catastrophic behaviour,
however, the best we may be able do is to signal its occurrence. Consequently,
we must admit that not all safety hazards may be excluded for sure, and neither
may some of the unacceptable behaviour!

20

Behaviour

normal abnormal

exceptional catastrophic

acceptable

Figure 3.1: Behaviour Classes

3.2 Abstraction Hierarchy

A specification may cover a certain class of behaviours, it is, however, not
sufficient to ensure them. With requirement and design specifications, expressed
in a certain specification language, we are still in the declarative realm and have
just accomplished the first step in the development of the desired system.

In order to get a working system, we must move into the operational realm,
i.e., implement the set of design specifications using an (imperative) program-
ming language. It is only by ensuring that during this move the stated design
specifications are preserved that we ensure that the desired system eventually
exhibits the specified behaviours.

Following the definition of designs in Section 2.2.2, we can say that designs
contain more information than requirements because the first ones are more
specific than the second ones. An implementation has to be even more specific,
and therefore contains even more information because we must give an algorithm
that effectively does what the designs state that should be done.

Thus, we can say that requirements are more abstract than their correspond-
ing designs, which are in turn more abstract than any possible corresponding
implementation. This is our abstraction hierarchy?.

1The higher degree of abstraction that distinguishes a requirement from its corresponding
set of designs is revealed in the more frequent use (in first-order formulae explicit and in
temporal formulae implicit) of the quantifier 3 in requirement formulae. Thus, the existential
quantifier can be seen as a sort of abstraction operator (see [9])

21

Part 11

The Specification

22

Chapter 4

Formalisation

4.1 Abstract Model Skeleton

In this section, we give the ‘skeleton’ of the formal semantics of our abstract
system model (presented informally in Section 1.1). The given semantics is
a skeleton in the sense that it defines some global but incomplete structure.
In our case, the structure is global with respect to the Environment and the
Controller. It is incomplete because it does not address the definition of the
inconsistency predicate (addressed in Section 4.2). The abstract model skeleton
can be expressed by the following, single formula:

Definition 7 (Abstract Model Skeleton) Let eet denote an external
event, al the action corresponding to eef, Ag; the time bound within which
update of internal Controller states must have occurred, Ay the time bound
within which a] must have been issued by the Controller such that Ag; <
Ag, and IP the inconsistency predicate. Then the axiom defining formally the
semantics of the abstract model skeleton is:

Alw(((eet A WithinF(IP, Agy)) — WithinF(al, Ag)) A
(al = WithinP(eet A WithinF(IP, A¢1), Ao)))

It happens that we have actually also expressed formally the intended mean-
ing of Requirements 1 and 2 (stated informally in Section 1.1): in the context of
the above definition the operator Alw captures the idea of receptivity whereas
the operators WithinF and WithinP capture the idea of reactivity.

4.2 Inconsistency Predicate

In Section 4.2.1 we state what information we are going to use in the deve-
lopment of the inconsistency predicate, then, how we are going to process this
information, and finally, what shape the resulting output will have.

Section 4.2.2 contains some judgements about the original specification doc-
ument, which are meant to justify the choice of our own specification layout
(laid down in Section 4.2.3).

23

We proceed in our specification process by defining some specification sche-
mata (see Section 4.2.4), which we shall instantiate with different parameters
in Section 4.2.5 to generate most of the necessary specifications.

At that point, we will be able to write out the inconsistency predicate, which
is what we do in Section 4.2.6.

4.2.1 Specification Process

We draw the necessary input information mainly from two parts of the original
specification document, i.e., the part called ‘Specifica dei requisiti funzionali
del sistema controllo marcia treno’ and Chapter 6, called ‘Funzioni’, of the
part ‘Specifica dei requisiti del sistema controllo marcia treno, Volume I’ (see
Appendix A). The latter contains an informal description of the ‘functions’ the
Controller is supposed to implement.

In order to define a valid inconsistency predicate we must understand as
clearly as possible the intentional content of the original specification. Therefore,
we will closely follow its presentation, which is functional, in the first place (in
this chapter), but will move towards a state-based presentation — conforming
to our abstract model — later on (in Chapter 6).

The shift towards a state-based presentation suggests structuring the spec-
ification according to data, i.e., state variables, by the means of classes (in the
sense of object-orientation). However, already before ‘shifting’, some structuring
according to operations, i.e., actions, can be done by the means of mathematical
sets and based on the 4CPQ.

The output of our specification process, i.e., the inconsistency predicate, will
take the form of a disjunction of certain left parts of implications or equivalences
of design formulae. Such a left part will have the form of a conjunction of an
event predicate and a predicate on some internal state(s) of the Controller.

The inconsistency predicate will be true whenever there occurs an external
event causing the corresponding predicate on internal states to become true,
which is how we want the inconsistency predicate to behave.

4.2.2 Specification Sources

In our view, Chapter 6 of the part ‘Specifica dei requisiti del sistema controllo
marcia treno, Volume I’ contains some confusion with respect to at least three
concerns: first, the concern what a function actually is, second, the concern
what logical level the function belongs to, and third, the concern of separation
of phases in specification development.

As for the first concern, we claim that not all of the ‘functions’ are actually
functions but rather are data for functions {‘velocita di rilascio’, ‘grado di fre-
natura’, ‘pendenza della linea’; ‘peso assiale’, ‘metro corrente’}, event sources
that generate that data for functions {‘segnali fissi’}, or modes of functioning
{‘linee con BACC’, ‘Supero Rosso’, ‘Diagnostica’}.

With respect to the second concern, we claim that some of the remaining
‘real’ functions actually belong to different logical levels, i.e., object and meta
level. The object level being the logical domain of functions that are related to
the treatment of external events (our central concern) {‘Indebito superamento
di un segnale a via impedita’, ‘Prosecuzione itinerario’, ‘Ingresso su binario di

24

ricevimento ingombro o corto’, ‘Protezione di parauti’, ‘Itinerari deviati’, ‘Su-
peramento della velocitd massima della linea’, ‘Marcia su binario illegale’}, and
the meta level being the logical domain of functions that are related to man-
aging the set of functions (the functionality) of the Controller {‘Gestione della
uscita dal sistema controllo marcia treno’, ‘Controllo della corretta operativita
del P.d.M rispetto alla inserzione disinserzione della RSC’}. We think that these
meta functions are very much implementation and use oriented, which is why
we do not consider them in the phases we are addressing in the specification
process.

Finally, by the third concern we mean more precisely that the above men-
tioned Chapter 6 mixes the phase of specification of requirements and the phase
of specification of designs within the process of specification development, and,
moreover, it does it without actually distinguishing explicitly between the two
phases. Our specification obviously will distinguish explicitly between speci-
fication elements that represent requirements and specification elements that
represent designs by labelling respective formulae as such.

4.2.3 Specification Layout

We structure our specification according to an operation-based scheme. The
operations being — from the point of view of the Environment — all external
events, and — from the point of view of the Controller — all actions. We
develop the scheme step-by-step and based on the set of external events:

From Chapter 6 of [6] we extract the principal external events — they are
the ones that cause or may cause the inconsistency predicate to evaluate to true:

Definition 8 (Inconsistency Causes) The set of inconsistency causes, IC, is
the set of external events that cause or may (depending on the content of the
internal states of the Controller) cause the inconsistency predicate to evaluate
to true right after the update of internal states:

diet deviated itinerary entered!

itet illegal track entered!

rlvt red light violated!

saat shock absorbers ahead!

mascr? maximum speed constraint received!
miscr? minimum speed constraint received!
ste? short track entered!

toet track with obstacles entered!

mtfrrt movement to ‘forward’ request received!

mtbrrt movement to ‘backward’ request received!

so that IC def {diet, itet, rlvt, saat, mascrt, miscrf, stet, toet, mtfrrf, mtbrr1}.

25

Looking at these inconsistency causes, we observe that most of them must
actually have some counterpart that will announce the ceasing of the situation
that made the Environment issuing the external event in the first place. We
call such a counterpart clearance event and define the set of events that cause
them as follows:

Definition 9 (Clearable Events) The set of clearable events, CE, is the set
of external events with a corresponding clearance event:

CE %/ {diet, itef, mascrt, miscrt, stet, toet}

Since not all external events have a corresponding clearance event, we also
define:

Definition 10 (Unclearable Events) The set of unclearable events, UE, is
the set of external events that do not have a corresponding clearance event:

UE %/ {rlvt, saat, mtfrrt, mtbrrt}

According to our model, external events that cause an inconsistency between
the internal states of the Controller make the latter issue an action in the domain
of the Environment. Actions directed to the train are supposed to control the
train, which may become faster or slower, or may even change direction. At the
highest level of abstraction, no other state changes are of interest.

In fact, all of these state changes make necessary a modification of the quanti-
ties of acceleration or deceleration, which is the reason why we call the quantities
‘speed’ and ‘direction’ primary, and the quantities ‘acceleration’ and ‘decelera-
tion’ secondary.

Looking at our model from the point of view of cause and effect, we can
say that inconsistency causes (obviously) cause Controller actions, which in
turn effect a change in the primary controlled quantities. Due to this causality
chain, which relates primary controlled quantities to inconsistency causes, we
have considered it reasonable to partition further inconsistency causes into four
subsets according to the change their corresponding actions incur in the primary
controlled quantities (see Figure 4.1 for the final structure of the class of external
events):

def

SD = {diet,itet, rlvt,saat, mascrt, stet, toet} (speed decrease)
s1 %/ {miscrt} (speed increase)
DB %/ {mtbrrt} (direction to backward)
DF &/ {mtfrrt} (direction to forward)

4.2.4 Specification Schemata
4.2.4.1 Composite Types and Special Operators

We present some preliminary definitions of concepts that will be used in the
following specification schemata:

26

Figure 4.1: Event Classes

Definition 11 (Train Type) The train type is defined as the cross-product
of the type of its breaks (bkt), its length (tnl), the maximum speed it may
assume (mtns) and its weight on axis (tnw):

tnt def bkt x tnl x mtns x tnw

Definition 12 (Track Type) The track type is defined as the cross-product
of its break ratio (tkbr) and its inclination (tki):

tkt < tkbr x tki

Definition 13 (Thresh-Hold Operators) Let a and b denote variables of
one and the same type T, and 0 < th < 1 denote a real number that is fixed
according to T. Then the thresh-hold operators are defined as follows:

a<mb Z a<(1-th)

a=mb ¥ a<(l+thbra>(1—th)b

<

a>mb & a>(1+th)b

The thresh-hold operators allow us to conveniently model margins of toler-
ance. Operand values that lie within these margins will cause the corresponding
operator predicate to evaluate to false, which in turn will inhibit the Controller
to react to the external event(s) that caused the change in the operand values
in the first place. We deliberately leave the definition of these thresh holds to
the people who are competent to do this.

4.2.4.2 Schemata

In the following schemata, the abbreviations ‘e-t’ and ‘e-c¢’ stand for ‘environ-
ment-train’ and ‘environment-context’. Further, we draw the reader’s attention
to the fact that in the following, we have not specified the functions cbf and ctc
for the same reason as we did not specify thresh holds previously.

27

GAPSR(sct, ps, cbf, cs?)

General Action Pattern for Speed Reduction

Specifies a general (re)action pattern for the controller — and thus a be-
haviour pattern for the train — upon reception of some implicit or explicit
maximum speed constraint (ps) from the context.

Predicate Name || Event
Source | Description
sct e-c speed constraint received!
tdt e-t traction deactivated!
bat e-t breaks activated!
bd1 e-t breaks deactivated!
cst e-c clearance for speed constraint received!
| Predicate Name || Action |

dt} deactivate traction!
abl activate breaks!
db] deactivate breaks!
Variable Name State
Type | Description
as et | TD | actual speed (km/h)
ps ec | TI | prescribed speed (km/h)
tnt e-t TI train type
tkt e-c | TD | track type
abf e-t | TD | actual break force (kN)
pbf e-t | TI | prescribed break force (kN)

Function Name |

Value

cbf

calculated break force (kN) in function of as, ps,
tnt and tkt

A
llS*i
ps% T T T T T T T e ‘\'7'7'7'7'71
iscabdidba s dbbd!
aux(A) def Futr(ab) A pbf = cbf(as, ps, tnt, tkt), Ay + A)
‘ sct A as > ps ‘ aux(0)
abl Futr(dti, Azn) N Futr(th, Azl) ANAop < Ay

ab) A as > ps

‘csT/\ as <¢h DS ‘
dbl

LTl z

Futr(bat A abf = pbf, Asz) A Ag > Aoy Aaux(As)
pbf = 0 A Futr(dbl, A3)
Futr(bdt A abf =0, Ay)

Specification Schema 1: General Action Pattern for Speed Reduction

28

GAPSI(sct, ps, ctc, cst)

General Action Pattern for Speed Increase

Specifies a general (re)action pattern for the controller — and thus a be-
haviour pattern for the train — upon reception of some implicit or explicit
minimum speed constraint (ps) from the context.

Predicate Name

Event

Source | Description

sct e-c speed constraint received!
bd1 e-t breaks deactivated!
tat e-t traction activated!
cst e-c clearance for speed constraint received!
| Predicate Name || Action |

dbl deactivate breaks!

at} activate traction!

Variable Name State

Type | Description

as et | TD | actual speed (km/h)

ps ec | TI | prescribed speed (km/h)

tnt et | TT | train type

tkt e-c | TD | track type

atc e-t | TD | actual traction current (A)

ptc et | TI | prescribed traction current (A)
| Function Name || Value |

cte

calculated traction current (A) in function of as,
ps, tnt and tkt

‘scT/\ as <ip DS

< Futr(dbl, Algy) A

Futr(bd?, Ajg) A Algy < Ajp A
Futr(at) A ptc = ctc(as, ps, tnt, tht), A}) A
Aly < Af

‘ati/\ as <tp ps N\ —|csT‘ “

Futr(tat A atc =, pte, AL) A

Futr(at] A ptc = cte(as, ps, tnt, tkt), A})

Specification Schema 2: General Action Pattern for Speed Increase

29

4.2.5 Specifications

In the following, we present the specifications for actions that the Controller
takes in response to external events. The specifications are grouped according
to the set each external event belongs to, i.e., SD, ST, DB or DF.

We have extensively used instantiation of specification schemata by varying
their respective set of actual parameters. For example, it has been possible to
use the same specification schema for clearable as well as for unclearable events
by introducing a clearance event with the constant value true for unclearable
events (true being the neutral element of conjunction).

Another case of specification schema instantiation is related to specifications
about explicit speed constraints. In such instantiations, an explicit value for the
parameter ‘prescribed speed’, ps, does not appear in the parameter list since
it is assumed that the variable has already this value when the event predicate
becomes true (see Section 2.4.3). So, no explicit value is needed nor desirable
at the time of specification instantiation.

A final remark as far as the presentation of requirement-design pairs is con-
cerned: it is actually inverse to the order by which we have obtained them. In
fact, the intention of each design maps more or less to the intention created by
some function description in the original specification document (the inverse is
not true). This is a typical case of reverse engineering by which we get from
something more concrete to something more abstract.

4.2.5.1 Speed Decrease

Table 4.1: Requirement-Design Pairs for Speed Decrease

Requirement 4

V(eet € SD)IA ((eet A as > ps) — WithinF(as =4, ps, A))

Design 1 (Circulation along Deviated Itinerary) Let [t (line type)

denote the string variable whose value is equal to the current line code.

Then the specification for circulation along deviated itineraries is as follows:
It =C30 = GAPSR(sct ? diet, ps & 30, cbf & cbfye, cst < dief)

It =c60 = GAPSR(sct Y diet, ps 2 60, cbf 2 cbfye, cst < dief)

It =C100 = GAPSR(sct Y diet, ps “ 100, cbf % cbtye, cst Y diet)

Design 2 (Circulation on Illegal Track)

GAPSR(sct “ itet, ps %/ 30, cbf & cbfie, cst X Tte?)

30

Table 4.1: Requirement-Design Pairs for Speed Decrease

Design 3 (Red Light Violation) Let sr denote the boolean variable
whose value is true when the special operation mode ‘Supero Rosso’ has been
activated and false otherwise. Then the specification for red light violation

is as follows:
TrainTrip ' GAPSR(sct & rivt, ps & 5, cbf 7 cbtyg, cst ™ true)
sr =false = GAPSR(sct def rlvt, ps def 0, cbf def cbfyg, cst def true)

sr =true = TrainTrip

Design 4 (Approach of Shock Absorbers)

GAPSR(sct def saat, ps def 5, cbf def cbfgaa, cst def true)

Design 5 (Reception of Maximum Speed Constraint)

GAPSR(sct def mascrt, cbf def cbfnaser, €sT def mascr?)

Design 6 (Circulation on Short Track)
10, cbf & cbiye, cst ™ stef)

GAPSR(sct ! stet, ps

Design 7 (Circulation on Track with Obstacles)
def 30, cbf def cbfige, csT def toet)

GAPSR(sct “ toet, ps

4.2.5.2 Speed Increase

Table 4.2: Requirement-Design Pair for Speed Increase

Requirement 5
V(eet € SI)IA((eet A as <y, ps) — WithinF(as =4, ps, A))

Design 8 (Reception of Minimum Speed Constraint)

GAPSI(sct “ miscrt, cte ctemiser, cst % miscr?)

31

4.2.5.3 Forward Direction

Requirement 6 (Movement to ‘Forward’) Let mtfrrt denote the event in-
dicating that a request to move the train in forward direction has been made,
and dir denote the string variable indicating the actual direction of train move-
ment. Then the specification for movement to ‘forward’ is as follows:

‘ mtfrrt A as =0 ‘ — dir = forward

4.2.5.4 Backward Direction

Requirement 7 (Movement to ‘Backward’) Let mtbrrt denote the

event indicating that a request to move the train in backward direction has been
made, and mr denote the boolean variable that takes the value true when the
train is in manoeuvring mode and false otherwise. Then the specification for
movement to ‘backward’ is as follows:

‘ mtbrrt A mr = true A as = 0| — dir = backward

4.2.6 Explicitly It

We write out the inconsistency predicate, which says when the Controller reacts
to external events. It does however not say how it reacts to them. If we want to
know also that, then we must look at the whole specification, which is situated
at a deeper level of abstraction.

p (diet A as <y, ps
(itet A as <y, ps
(

v A as <gp, ps

(dietT A as > ps)
itet A as >y, ps)
rivt A as > ps)
saat A as > ps)

(

(

((

((

((mascrt A as >, ps)
((

((

((

(

(

(saat A as <y, ps

)
)
)
))
(mascrt A as <yp, ps))
))
)
)

(stet A as <ip ps
(toet A as <y, ps
(aty A as <¢, ps A —miscr?t

stet A as >ip ps)
toet A as >, ps)
miscrt A as <y, ps)
mtfrrt A as = 0)
mtbrrt A mr = true A as = 0)

Vv
Vv
Vv
Vv
\
Vv
Vv
Vv

KKK KKK LK KL

32

Chapter 5

Verifications

5.1 About the Specification

The most important verification to make about a specification is to check
whether or not it is satisfiable. If the set of logical formulae constituting the
specification is not satisfiable, then no implementation, i.e., a model, be it ab-
stract (our system model) or concrete (some control program), can exist for it!.
As for our specification, we make the following claim:

Claim 1 (Satisfiability) The specification consisting of the set of formulae
given by Design 1-Design 8, Requirement 6 and Requirement 7 is satisfiable.

Satisfiability of a set of time-dependent logical formulae is decidable in spe-
cial cases such as if the corresponding time domain is finite. In that case,
satisfiability can be checked algorithmically by using some appropriate tool or,
also, by hand. Such a tool exists for TRIO, yet it is not fully automatic and
some experience of using it is needed. On the other hand, performing the sat-
isfiability check by hand is arduous and time-consuming. In fact, it is easier to
give some informal arguments for Claim 1.

Our argument is constructive and based on so-called causal implications.
With SomF(f) “ IA(A > 0 A Futr(f, A)) we define:

Definition 14 (Causal implication) Let ¢ and e denote some time-depen-
dent predicates. Then a causal implication, or a relation of cause and effect,
denoted ~~, between the cause ¢ and the effect e, is defined as follows:
cwe™ Alw(c — SomF(e))
A causal implication is a special case of a temporal implication, and has the

evident but interesting property of being always satisfiable. Further, we use
causal implications to define the concept of so-called causal chains.

'In fact, the situation we face has arisen due to the intensional character of our ‘definition’
in Section 4.1 (formal semantics). An intensional definition is a definition that defines some
mathematical object(s) (models in our case) by an enumeration of the properties (TRIO
formulae in our case) the object(s) is, resp. are, supposed to have. If there is a contradiction
in these properties, then nothing has been defined with the ‘definition’.

33

Definition 15 (Causal Chain) A causal chain is a chain of causal implica-
. de
tions: C; ~ Cp ~» ==+ ~» Cy ™ €, :fcl ~>e1 ACy~ ey A---Acy ~ ey, where for

T . def
all indices ¢ we have ¢; = e;_1.

By construction, and due to transitivity of causal implications, causal chains
are always satisfiable.

It happens that each of our specification schemata basically specifies two
such generic causal chains? (see Specification Schemata 1 and 2, where each
causal chain is represented by a dash-dotted rectangle in the field (Informal
Description)). So, our specification schemata are somehow already ‘half-way’
satisfiable. We say ‘half-way’ because the causal chains each specification sche-
ma specifies may actually overlap. Thus, we might have accidentally specified
some implicit contradiction. More precisely, for some indices 7 and j, and for
some time instant ¢, we might have e from one causal chain and e; from the
other causal chain such that ¥; e A g;.

For Specification Schema 1 this means that pbf = 0 might contradict pbf =
cbf, and that abf =, pbf might contradict ebf = 0 at some time instant.
However, this is impossible because then, as >, ps and as <, ps would have
to be true at the same time, which is physically impossible.

For Specification Schema 2, it is evident that there cannot exist any contra-
diction since the causal chain consists of a single cause without any correspond-
ing explicit effect.

We may conclude that both our specification schemata generate satisfiable
sets of formulae, i.e., designs. The remaining question is now whether or not
the conjunction of designs is still satisfiable. The answer is ‘yes’ because the
particular causal chain pairs are disjoint with respect to the external events
that induce them. So, no contradiction can be introduced by joining individual
designs.

The remaining formulae in our specification are Requirement 6 and Require-
ment 7. It is easy to see that their conjunction is also satisfiable, and so is
their conjunction with the set of design formulae, which means that the entire
specification is satisfiable.

5.2 Within the Specification

5.2.1 Proof System

The TRIO proof system consists of a set of general axioms, a set of temporal
azioms, and a single derivation rule, i.e., modus ponens (see [1]). General axioms
are those axioms that are shared with any first-order theory with equality. We
will not restate them here, assuming that the reader is already familiar with
them. Temporal axioms are those axioms that are specific to TRIO:

TA1 | Dist(f, 0) ¢ f
TA2 |= DiSt(f7 Al + A2) <« DiSt(DiSt(f, Al), AQ)

2We note that the set of all those causes that come first in the specified causal chains is
identical to the set of inconsistency predicate terms. We may therefore say that every specified
causal chain is induced by exactly one inconsistency term.

34

TAS3 [Dist(f1 = f2, A) « (Dist(f1, A) — Dist(f2, A))
TA4 = Dist(—f, A) < —Dist(f, A)
TA5 | f — Alw(f) if f is time-independent

where Dist(f, A) intuitively means that f holds at an instant laying A time
units in the future (if A > 0) or in the past (if A < 0) with respect to the current
time value, which, as we already know, is implicit in the formula. Assuming
Dist primitive, we obtain:

Futr(f, A) 2 A >0ADist(f, A)

Past(f, A) %/ A >0ADist(f, —-A)

In addition, we will need the following theorem (proven in [1]), Ti, and
lemma:

Ti F Alw(f) — Dist(f, A)

Lemma 1 (Dist/A-Distributivity) Given the formulae fi and f», and the
time constant A, we have:

F Dist(fi A fa, A) > Dist(fi, A) A Dist(fo, A)

Proof
Dist(f1 A fa, A) < —==Dist(fi A fa, A)

+ —Dist(=(f1 A f2), A) TA4
+ —Dist(—f; V —fa, A)
< —Dist(fi = ~f2, A)
< —(Dist(f;, A) — Dist(=f2, A)) TA3
+ —(Dist(f1, A) = —Dist(f2, A)) TA4
« —(=Dist(f1, A) V -Dist(f2, A))
+ ——(Dist(f1, A) ADist(f2, A))
+ Dist(f1, A) A Dist(f2, A) O

5.2.2 Proofs

We have to prove correctness of two series of refinement steps. The first occurs
between Requirement 4 and Design 1-Design 7 and the second occurs between
Requirement 5 and Design 8.

Since all designs have been generated from generic specifications (specifica-
tion schemata), we are actually also in a position to give generic proofs. In our
case, a generic proof is a proof that validates a whole series of refinement steps
rather than only a single refinement step. A series of refinement steps is such
that all steps within the series originate from the same requirement but end in
different designs (created from the same specification schema).

35

In order to prove correctness of our refinement steps, we must make some
appropriate assumptions about the effectiveness of certain Controller actions
in the domain of the Environment. In fact, the Controller alone cannot ensure
that breaking effectively produces a decrease in train speed, or that an increase
in the traction current effectively produces an increase in train speed because
these issues are beyond its influence. We assume:

Assumption 3 (Breaking Is Effective)
As & Alw(abl — SomF(=(as > ps)))
Assumption 4 (Activating Traction Is Effective)

As 2 Alw(at, — SomF(~(as <4 ps)))

Comparing the above assumption formulae with the stated requirement for-
mulae, we observe that, just like requirement formulae, assumption formulae
basically consist of some causal implication. Thus, at first sight, there is no
difference between assumption and requirement formulae. However, a closer ex-
amination (see Table 5.2.2) of both kinds of formulae reveals that there actually
is some difference.

Occurrence Requirements | Assumptions
External event || only in the cause | no

predicate names
Action predicate || no only in the cause
names
Names of variables || in cause and/or | only in the effect
with prescribed or || effect
actual values

Table 5.1: Requirement and Assumption Formulae: Syntactical Differences

In fact, assumption and requirement formulae can be distinguished accord-
ing to the location (cause resp. effect) certain symbols occupy within the im-
plication. Quite naturally external event names only occur in the cause of a
requirement, whereas action predicate names only occur in the cause of an as-
sumption. We say ‘naturally’ because the essential role of a requirement is
to describe what property has to be met after some external event has been
registered by the Controller, whereas the essential role of an assumption is to
describe what impact the Controller must be able to measure after the issuing
of the corresponding (re)action in the domain of the Environment.?

Having made the necessary assumptions, we are able to prove correctness of
the aforementioned refinement steps (see Proof 1 and Proof 2). In the proofs?,
we adopt the following conventions: first, we use axioms, our lemma, and our

3To be complete, we restate the essential role of designs: it is to describe what actions the
Controller takes in order to meet the corresponding requirement.
“have been typeset using TEX macros from Prof. Jacques Zahnd (EPFL).

36

theorem directly in formulae containing Futr and not Dist. Second, justifications
for application of first-order derivation rules are either omitted, or reduced to
an indication of the lines at which the corresponding ‘input’ judgements are
located.

1°| [AGAPSR A A hyp

2° sct € SD hyp

3° sct A as >y, ps hyp

4° Alw((scT A as >¢p ps) <> Futr(abl A pbf = cbf, Ay)) 1°, a fortiori
5° Futr((sct A as >, ps) ¢ Futr(abl A pbf = cbf, A;), 0) 4°, Ti

6° (sct A as >, ps) < Futr(abl A pbf = cbf, Aq) 5° TA1

7° Futr(ab) A pbf = cbf, A;) 3%, 6°, mod pons
8° Futr(ab}, A1) A Futr(pbf = cbf, Ay) 7°, Lemma 1
9° Alw(ab] — SomF(—(as >, ps))) 1°, a fortiori
10° Futr(ab] — SomF(—(as >, ps)), Ay) 9°, Ti
11° Futr(ab}, Ay) — Futr(SomF(=(as > ps)), Aq) 10°, TA1
12° Futr(SomF(—=(as >, ps)), A1) 8°, 11°, mod pons
13° Futr(3A(A > 0 A Futr(—(as >, ps), A)), Aq) 12°, def

14° JA(Futr(A > 0 A Futr(—(as > ps), A), Ay)) 13°

15° JA (Futr(A > 0, Ay) A Futr(Futr(—=(as >4, ps), A), A1) 14°, Lemma 1
16° JA(Futr(A > 0, Ay) A Futr(=(as >, ps), A+ Ayq)) 15°, TA2

17° JA(Futr(A > 0, Ay)) AJA(Futr(=(as > ps), A + Ay)) 16°

18° JA(Futr(=(as >, ps), A+ Ay)) 17°

19° Futr(—(as > ps), A+ Ay) hyp
20° A’ (Futr(=(as > ps), A')) 19°
21° AA'(A" < A’ AFutr(=(as >4 ps), A')) 20°
22° WithinF(—(as >¢, ps), A’) 21°, def
23° WithinF(=(as >, ps), A') 18°, 19°, 22°
24° (scT A as >, ps) — WithinF(=(as >, ps), A') 3°, 23°
25° JA((sct A as > ps) — WithinF(=(as >4, ps), A)) 24°
26° sct € SD — JA((sct A as >¢p, ps) — WithinF(=(as >y, ps), A)) 2°, 25°
27° | | V(sct € SD)(FA((sct A as >¢n ps) — WithinF(—(as > ps), A))) 26°
28° V(eet € SD)(FA((sct A as >4, ps) — WithinF(—=(as >4 ps), A))) 27°
20° | (\ GAPSR A A3) —

V(eet € SD)(FA((sct A as >¢p, ps) — WithinF(—(as > ps), A))) 1°, 28°

Proof 1: Refinement Correctness for Speed Decrease Designs

37

10
o0
50
e

5°

6°

7o
8°
90

10°

11°
12°
13°
14°
15°
16°
17°
18°
19°
20°
21°
22°
23°
24°
25°
26°
27°
28°
29°

Alw((sct A as <, ps) <> (Futr(dbl, Ajgy) A Futr(bdt, Ajg)A
Algo < Alg A Futr(at) A pte = cte, A}) A Ajy < AY))
Futr((sct A as <1, ps) ¢ (Futr(dbl, Afyy) A Futr(bdt, Ajg)A

Al < Alp AFutr(atl A pte = cte, A}) A A}, < A}), 0)
(sct A as <n ps) <> (Futr(dbl, Algy) A Futr(bdt, Ajy)A
Algo < Alg A Futr(at) A pte = cte, Aj) AA}, < A})
Futr(at| A ptc = cte, A})
Futr(at), A}) A Futr(ptc = ctc, A})
Alw(at| — SomF(—(as < ps)))
Futr(at] — SomF(—(as < ps)), A})
Futr(at), A}) — Futr(SomF(—(as < ps)), A})
Futr(SomF(—(as < ps)), A})
Futr(3A(A > 0 A Futr(—(as < ps

): A)), A1)
)

A GAPSIA A, hyp
sct € SI hyp
sct A as <yp, ps hyp

1°, a fortiori

4°, Ti

5°, TA1

3°, 6°, mod pons
7°, Lemma 1

1°, a fortiori

9°, Ti

10°, TA1

8°, 11°, mod pons
12°, def

JA (Futr(A > 0 A Futr(=(as <y, ps), A), A})) 13°
JA(Futr(A > 0, A}) A Futr(Futr(=(as <g ps), A), A})) 14°, Lemma 1
JA (Futr(A > 0, A}) A Futr(=(as <t ps), A +A})) 15°, TA2
JA (Futr(A > 0, A})) AIA(Futr(=(as < ps), A + A})) 16°
JA (Futr(—(as < ps), A + A})) 17°
Futr(—(as <:n ps), A + Al) hyp
AA"(Futr(—(as <, ps), A")) 19°
JA"(A" < A" A Futr(=(as <y, ps), A")) 20°
WithinF(—(as < ps), A") 21°, def
WithinF(—(as < ps), A") 18°, 19°, 22°
(sct A as <¢p ps) — WithinF(—(as <, ps), A") 3°, 23°
JA((sct A as < ps) — WithinF(—(as <, ps), A)) 24°
sct € SI— JA((sct A as < ps) — WithinF(=(as <;p, ps), A)) 2°, 25°
V(sct € SI)(FA((sct A as <up, ps) — WithinF(=(as <;1, ps), A))) 26°
V(eet € SD(FA((sct A as <y ps) — WithinF(—(as <y, ps), A))) 27°

(A GAPSI A Ag) —

V(eet € SI)(FA((sct A as <t ps) — WithinF(—(as <1, ps), A))) 1°, 28°

Proof 2: Refinement Correctness for Speed Increase Designs

38

Chapter 6

Modularisation

As announced in Section 4.2.1, the specification can be structured, first, further,
and second, according to data. For this purpose, we refine the data space
introduced in Section 1.1 and relate the different components of the space among
each other.

As a result, we obtain a state-based (in conformance with our abstract sys-
tem model) and layered data model for our Controller. Finally, we show how
the introduced concepts map into TRIOT concepts thus providing indirectly a
modular version of the Controller specification. We say ‘indirectly’ because we
do not write out explicitly the modular specification, but merely describe how
the modular version can be obtained from the non-modular version.

The data space of Section 4.2.1 can be refined by sub-typing the type ‘op-
eration data’ with the type ‘mode-related data’ and with the type ‘temporary
data’. Modes of operation are the modes due to the various line types (It), the
manoeuvring mode (mr) and the mode ‘Supero Rosso’ (sr). Temporary data are
all variables containing actual and prescribed values (as, ps, abf, pbf, atc, ptc) as
well as the variable indicating the track type (tkt) and the variable indicating the
current direction of train movement (dir). We end up with four time-dependent
data types, i.e., configuration, operation, mode-related and temporary data.

Since our data consists of state variables, we can observe that, put in the
above ordering, the time-dependent data types are actually ordered according
to two criteria: first according to the frequency updates in state variables would
typically occur during operation, and second, according to visibility of data. By
the first, we mean that configuration data is, for obvious reasons, least often
updated and temporary data is, of course, most often updated during operation.
By the latter, we mean that the scope of configuration data must be global with
respect to the rest of data for obvious reasons, but not the other way round.
The analogous is true for operation and mode-related data.

Our abstract system model is state-based grouping information from the con-
text and the train in two separate internal states. Space-dependent data thus
occupies the first dimension in our two-dimensional data space. Time-dependent
data consequently is subordinated to it occupying the second dimension. This
means that each internal state will be structured further according to the above
introduced layers for time-dependent data. Figure 6 shows this further struc-
turing of data.

39

Each data layer can be implemented with a TRIO™ class with the inheritance
hierarchy creating the necessary visibility ordering of variables. An instance of
the class ‘ContextState’ and an instance of the class ‘TrainState’ model the
internal states of the Controller. Generic classes can be used to model the
specification schemata of Section 4.2.4, which can be instantiated to generate
Design 1-Design 8. Finally, two separate axioms can be used to express Re-
quirement 6 and Requirement 7.

atc, ptc, dir

ABSTRACT
CONCRETE

DATA
OPERATIONS

Figure 6.1: A Layered Data Model for Internal States

40

Part 111

Epilogue

41

Chapter 7

Beyond the Specification

So far, we have considered the Controller for itself. In this chapter, we briefly
investigate the relation between the Controller and the rest of the system, the
ground system, as far as safety in the railway network is concerned.

The most important property of a safe railway network is that there is never
any single train crash. A train crash can only occur when there are at least two
trains circulating on the same piece of track. We define a piece of track to be a
single continuous pair of rails of a certain length delimited on both sides by a
semaphore.

If we want to exclude train crashes, then we must disallow that two trains
circulate on the same piece of track. This is normally done by switching the
semaphores at both of its ends to green whenever there is no train circulating on
the track, and by switching the same semaphores to red whenever the track has
already been entered by a train. If the whole railway network is systematically
constructed using only pieces of tracks protected by semaphores, then it can be
guaranteed that crashes cannot occur.

However, by introducing semaphores, we have introduced the risk of dead-
lock'. What about a train that wishes to leave a protected piece of track at a
certain end e when at the same time another train is waiting at e for entering
the same piece of track? A possible solution for dead-lock is to provide a one-
way-only piece of track at e that allows the first train to go round the second
train without using the same piece of track. If we systematically provide this
kind of ‘round-about’ then no dead-lock can occur.

Of course, each train has to respect a red semaphore and wait until it be-
comes green. This is the most important responsibility of the Controller. It
guarantees local safety with respect to semaphore use. On the other hand, the
ground system must effectively provide these semaphores and manage them in
a correct way. This is the most important responsibility of the ground system,
which guarantees local safety with respect to semaphore management.

L Absence of dead-lock being a utility requirement (see [10] for more information), we see
that the satisfaction of safety requirements may collide with the satisfaction of
utility requirements. In other words, design decisions taken in order to satisfy some safety
requirement may not generally be taken independently from those design decisions that are
taken in order to satisfy utility requirements, and vice versa.

42

For crash safety, both correct semaphore use and management are necessary
and only taken together are they sufficient to guarantee it. We may conclude
that in a railway network employing semaphores, crash safety is a
global and systemic property.

43

Chapter 8

Conclusion

Our work is a modest case of scientific consulting to a large industrial project.
In an exploratory effort, it presents an abstract model, and based on it, a formal
specification for the desired real-time train controller specified informally in [5],
[6], [7] and [§].

8.1 Discussion

For the conception of the abstract model, some pre-processing of the informal
information was found to be necessary. This involved restructuring, and making
abstraction of certain input detail considered to be irrelevant for the level of
abstraction at which we judged reasonable to tackle the problem.

The overall approach has been constructive or bottom-up in the sense that we
have used pieces of already existent information to construct a new information
representation, our abstract system model. It is top-down with respect to the
abstraction ordering that exists between requirements and designs.

The restructuring has been made first according to operations and then ac-
cording to data. Further, it has entailed a presentation shift from the functional
view of the controller behaviour, such as it is described in the original specifica-
tion document, to the state- and event-based view of the controller behaviour,
put forward in the present document.

Information which of we have made abstraction has been ‘banned’ into
sharply-delimited confinements of some well-defined, generic concepts, such as
special operators, types, and a few specific functions. Their particular defini-
tions have been left for later phases that will be devoted to the more concrete
aspects of specification development.

The specification has been obtained as a result of a formalisation process
employing the specification language TRIO. With the result, we have been able
to perform various werifications, thanks to the formal character of the spec-
ification. We have given the specification its final, modular shape using the
object-oriented extension of TRIO, TRIOT. As a plus, we have outlined the
role of the controller specification with respect to the rest of the larger system.

During formalisation, we followed some clear guidelines specifying controller

44

behaviour at two different levels of abstraction (macro- and micro-behaviour),
which we have described separately in two different sections.

Before formalising controller behaviour, we introduced various conventions.
Lexical conventions served us to name problem-specific concepts (specification
alphabet), whereas syntactical conventions served us to relate these concepts
among each other in the textual scopes of our specification. Finally, we in-
troduced some semantic conventions in order to be able to relate our abstract
model to some supposed environment.

We said to which extent we intended to formalise controller behaviour by dis-
tinguishing two dimensions within the specification process. We called the first
dimension ‘scope’ (specification breath) and the second dimension ‘abstraction
hierarchy’ (specification depth).

As the most notable feature of the formalisation itself, we cite the intensive
use of generic treatment of input information. In fact, nearly the whole
variety — and apparent complexity — of input information could be
formalised using only two generic specifications.

Generic treatment has also shown considerable benefit for specification ver-
ification. It has actually allowed generic proofs (carried out formally) of re-
finement step correctness, and simplified the check of specification satisfiability
(justified informally).

In the specification modularisation, we have refined controller states by in-
troducing visibility layers for the state variables of the internal controller states.
Both, internal states and their layers, can be implemented using TRIO™ classes.
Controller behaviour formulae can be grouped in an array of instances of generic
classes (designs) and normal classes (requirements).

8.2 Further Work

Of course, our specification must be refined in breadth as well as in depth. The
issue of abnormal behaviour, resp. abstracted information has to be addressed.
Also, the specification in terms of TRIOT must be written out by using the
recipe given in Chapter 6.

Abstracted information is confined in composite types, thresh-holds, generic
functions (cbf, ctc), and time bounds, all of which must be defined. Even deeper
in the abstraction hierarchy, code generation, i.e., the generation of some control
program, has to be undertaken.

Code can, at least theoretically, be obtained from a specification using a
refinement calculus, which does not yet exist for TRIO at the moment. More
traditionally, code can be generated directly by having the intention of the
formal specification in mind and checking the validity of the code a posteriori
using a model checker.

45

Appendix A

Original Specification
Document Table of Contents

o
DIVISIONE SPECIFICA DEI REQUISITI DI SISTEMA
INFRAS TR TTURA
PRELIMINARE
ot DI TE SR IS 13 XXX A FeaLio

SPECIFICA DEIREQUISITI DI SISTEMA CMT

Volume Titolo

0 INDICE GENERALE

Stampa dal G2H02/01 8.08

Rev. Data Descrizione Redazione Verifica Tecnica Autorizzazione
A 18/04/00 | Prima Emissicne | Mauro Michelacci (" Michele Mario Elia

46

INOIZNNd 9

g88-188 02BHa] L'E'S
8odepalY] £°G

BLUSIS [3P YA IP O]21D 1272
62 105N @ 8ZL0SNT “9Z+0SNT DI TANTD
SAllEULIOWI OPUODaS | WOS |9p Buoizezzieal e| Jad oallezziueBio o0SSE00Id

gSS 9P BINRAUUOY ZTS
LSS [9P BINJBIRIY 125
BLSISS IP BINKALIYSY 2§

opJloq Ip o2ISY Ausiquly Z°L°5
B3 Ip OJISY Auiquiy L°L°G
odlsy ajualquy LG

OLS3INOD §

opiog Ip BWANSISOHOS BV
BlI3L Ip BWIAISISOHOS
BWASIS L't

opoddns Ip ewalsis

OpIoq Ip BWAISISONOS £

auoisioaud 1p 12a] £

ougJ}. B19.JEW 05S800.d [8P O[|0JIU0S P IPOW 9
B}100[2A P 0OJWEUIP Oj}old §

BLI00|2A P 0J1ELS Ojoid t

4

1

L

LWO/ewals|s indw ieg

ossaooud |ap 1se4

ouad} BIOJEW O|0JUOD EWSLSIS
ouaJ] BIoUBW 0SS2004d

ONIHL VIDHYWN OTIOHLNOD I YIWALSIS 130 ITVHINID INOIZAHDS3A

4SS |9P O||2Al| B OJUSLULISLL IP BUOIZBIUBWINSGY 9|
LSS IP O||8A1] B OJUBLILIBJL IP SUOIZBIUBWNDOG Z'G°L
BW2ISIS IP O|[2AI] B OJUSLULL auolzejuawnoog L'gL

ojuawWial Ip eucizEUBWND0d 97|

nueidw) ¢z¥

OuU2WE|ZUELSIP IP eSS E'CF
01ZI243S3 I IWa} et
|un 12y

B1I8] IP BWDISISOHOE Z¢
ewgsis L'y

NLUTEYI1ddy

0OpJoq |p BLIAISISONOS EE
BLI8] IP BWDISISOLOS Z'E
Bwalsls |I'e
ANOIZVZATILN €

elojoquis €5}

LND ewalsig — JUS Iisinbay 19p elliqeldoel) 1P 3oleN L
ojuawnoop [ap odoog gL

SHs e(1ap oddnjias 1p oueid 2 opolay 71

essawald ||

INOIZNAOHLNI |

VIN31SIS -9 INOIZ3s

opJoq IP @ B2} P WelS|S010S BHIqesadolaiul edyLeA 82 C
MS 9P B2 1272

LD eways|s ezzainols auojzeacidde |p ossasold 9272
LD BLW3|SIS BUoiZeplleA §2°Z

copeual ogopoud [@p ELA IP OIID +EE

A8S 18P ELA P O]2ID E'TE

1SS [PPEHAIP ORID Z°27C

NLTVHINID =V INOIZ3S
SHS - v IWNTOA

J1vHINTO 3DI1ANI

e ¥ X T § BS 5L iGeweo| STVHANID 30I0NI- LADS
IUYNIAITEHd
PHLLPELE YIS
YW3LSIS 1A LLISIND3H 130 ¥OI4ID3dS FNOISLAST
&

e ¥ X T § BS 5L iGeweo| STVHANID 30I0NI- LADS
IUYNIAITEHd
PHLLPELE YIS
YW3LSIS 1A LLISIND3H 130 ¥OI4ID3dS FNOISLAST
&

47

1UoIZELLIO] ZL°9
HBURIS E'ZL9

IABWLIO] BUNd 2719

8uUoIZUNY B||Ap BUOIZUSSS] L'ZL9

EL100]aA I JUOIZNPU 3|2 ojadsL auoizajold Z1'g

Heuads E'9'9

ILEWIOLUI HUNd 299
auojzuny B||ep auo|zZUosaq 199
ipnesed |p aucizejoid §°9

IpeJBag 57119

1UoIZEULIOW| 'L L"g

UBUAIS E'LL"G

IALBWLIO] UNd Z7LL'9

auolzun} e||8p 2uUoIZUdsSaJ L'LL'g

(Jds t'+§) nuawejuaied |2 oyadsy auoizalodd |19

auojzuny ejjep opesfag 5oLg

IUOIZBULIOJU] 1°0 18

Weug E'0L'9

anewL oul ipund 1ep suoizisodwoen Z'0Lg

auojzun} B||ep aUoIZU2Saq L 019

eaul| ejjep ezuapuad 2 einjeuad, Ip opesb e ofadsu auoizajoid 019

peibag 659

UQIZEUWIOW] 59

ueusos £'59

IABWIOUI BUNd Z°5°9

auojzun} B||ap 2uUQIZUISa] |59

{dUS ¥ Lt §) oHoeD o ciquofiul ojuawAsal IP CMEUIG NS ossalbul un Ip 2uoizaloud 59

pesfaa 5+9
IUOIZEULIOJU] 479
Heu3dg gt'9
lewJojul jund Z°%'9
auozuny} e[|ap 2UoZUoSad Lt'9

{dHS £~ 1" +8) ouelaul auoiznaasoud 1p ||leubas |ap auoizajoid +9

auolzuny e|jep opelBag 569

UoIZEULOW] 69

Ueuds E£69

iewa opu] jpund 1ep euoizisedwoed 69

auolzuUNny B||ap aUOIZUOSA] |69

(443 1'2+8) BaU| (19 BWISSEW BYO0 A B||2 Ofadsy aUoiZalold 69

pesfeq ggg

|UOIZEULIOJ| $'E9

ueuadS E'EQ

oaflewIo ound |ap auoizisodwon z'E9

auojzun} B||@p aUoIZUoSeq | E9

{4HS 7 1'+8) eypaduwi eia e ajeubas un Ip ojuawelsadns ojigapy] £9

auojzuny e|jep opesbag 5g9
uoIzEULIO] 89

Weuaos £8'9

IEUL opul [und |ap auoizisodwod 289
auozuny e||ap aUOIZUISA] 1'§°9

(4us z'v§) "ezusiiedoapie |p lleiAep peJAUL opadsy auoiZalold 89

auoizuny ejjap opedbaq 8279

1uoIZRULIOW] £°2g

Heuads 9'29

1euLopul (und 18p auoizisodwod §2°9

ESJOD |P UOU 3UO0IZB|02JID |P MBUIQ NS I}EIAP LBJAU Bap auonseny 29

11EDRIP 02 @ BSUOD |P LEUIG BJl BZUSLIEC/OAILIE IP 11BIAPR LEJBUIY ||Bap auoizalold £2°9
. ESI0D Ip MEUIq Ins IsSY ||eubas |1ap auoizajold e|jap suonseny Z'29
auojzunj e||ap auo|zUdsa] |29

(4Hs 9°1'+8) 1WOS 2eizied aucizajold @ povE Uoo 3auIl 19

peabag 0129

IUQIZEULIOW] §'2°9

ueu3os 879

"WP'd 42d eopuod Ip BAlBULION £'2°9

D0Vd ojos Uo? 33Ul 929

WunpL Ip g 4ed jalewl o) und 1ap auoizisodwon 5279
BO|WEUIP 35B} Ul BIDJEW E|[3P 2UoiZEI2qI] +'2°9
ezuapedu Ip eLOCBA £'2°9

ouaJ| Bllopuos e||ap ajeuosiad |ap elubau] Z'Z'9
auoizunj e||ap auoIZUJSa] |29

010SE| IP BIOOIBA 29

1peiBag 599
IUolZeuwLoju] +'99

auolzuny e|jep opelBag §'L9

JuOIZEULIOM] 2719

Heuaog 919

oosoubelp coewenddy 519

olewissoidde oalyalqo ezuelsiq +71°9

auoizeiqiedly £'1°9

155 1leufies @p Injewloul pund 1ep euojzisedwed g9
auolzuny e||ap auo|zUOSa] |19

1ssl Ileubas |e oyadsy auo|zajold |19

She ¥ X T § BS 5L iGeweo| STVHANID 30I0NI- LADS
FLVNIAMNE PHLLPELE YIS
YW3LSIS 1A LLISIND3H 130 ¥OI4ID3dS FNOISLAST
&

e ¥ X T § BS 5L iGeweo| STVHANID 30I0NI- LADS
FLVNIAMNE PHLLPELE YIS
YW3LSIS 1A LLISIND3H 130 ¥OI4ID3dS FNOISLAST
&

48

LND BWalSIS L'ZL
auo|zejuawNdog Zh

gas8s 27k
LS8 L
auoZuANUEN L

gss 270k
OAJlEULIOU 0JPBND L 0L
LD BWaIS|S [2p audlMen “auo|zuainuew ‘auo|zeinByuos e sed puawnas ok

0|Z|/U8S U| BSSAW B| @ BD|jaA B Jad ainpedoid 6

IpeJbag 2'0z°9

IUQIZEWLIOIUI 9029

eyjiqesddy 5029

neuuopl und jap eifojodil 079

asS3LWSEe.} UO|ZB WIOU| 3||ap 3UOIZUOSa] £°0Z°9

ojuBWILR IP UBWNDOQ 2029

essawald 1029

€SS |2 ajaWseI} LSS || Y2 1UoiZe Lo 3]|2P oHeUOIZIQ 0Z'9

619
a9
Z1'g

faes g
WYH I01pul suozeas|ly g8

el GIUAINUBN 528
0]02[2 IP 12PN +'2°8
Anesado LolBA £78
ojuaWILalLl IP I|BjUSIqWE USIZIPUCD 229

EWAISIS IP I[|2powW 18p auoZiuyag L8
qiuainuew ‘euiquuodsip ‘euIgepIYY 28
odoog |g
SWvH 8

peabag 579179
1UoIZRULIOJ| +'9"9
Heuaos £'91°9
1altewogul pund 1p auoizisodwon Z'9L g
auojzunj e||ap 2uUOIZU2SaJ 1919
OSH B||8p auo|ziasuISIp
j @uoiziasul ejle ojadsu "WP'd 2P EBlAlleiado epauod E|lap of|oJiioD 9179

IpeJBag 5519

1UoIZEULIOW| +'5179

UBU3DS E'5L°9

injewlio) pund |p auoizisedwed 519
auoizunj B||ap 2uUOIZUISa] L'51°9
ojezzuolhe ossod oladng g9

158 |ap auojzeyaboud e|je opoddns |p uawnys 2 aunpasold 2

nuaweundde auoljsen £'£Z°9

auozualnuEW |p uanialul ||Bap auolSeD g'EZ°9

1onsoubelp Ijep 1ap auolisab Ip ewalsis [@p BINRBUYOIY L'EZ'9
eopsoufielq g2'9

IpeJBad 5719

1UOIZRULIOW| +'¥1°9

UEUSOS E'FLg

injewnioy pund |p auoizisodwod ZvLg

8uo|zun} B||ap 2UOIZUOSS] L'¥L 9

ajefia||l oueUIg NS BlOJRW B||2 OjadsU auociZalold 19

gs82'22'9
188 1229

{4Hs 1 §) nuene auoizesisibay zz°9

(44s 11'¥8) awauioo ojaw Jad 2 ajeisse osad Jad auozeywi 129

auoizuny e|jap opeiBag 9°glg

IuoIZELLIO] 5EL'Y

HBURIS #'ELg

IAlLRWIOUL fUNd EEL'Y

eulyooR W |p 3jeuos.tad |1 1ad B1OPUCD IP BAIBWION Z'EL'9
auoizuny g[|ap auoIzUosaqd L'EL'9

LD BWAISIS [EP BYISN B||SP SUONS3D £1°9

sy ¥ X T § BS 5L iGeweo| STVHANID 30I0NI- LADS
IUYNIAITEHd
PHLLPELE YIS
YW3LSIS 1A LLISIND3H 130 ¥OI4ID3dS FNOISLAST
&

IpeJBaa 57Z19
s 7 YOO L 8 8BS 51 ia=wen I TYHANID 3DIONI - LWOS
JHYNIAMIHd
CHIILLIPYLS CEINT
VWILSIS I IUSIND3Y 130 ¥OI4103dS FNOISIAST
o

49

BUBIZEZZIUOIOUIS & OYN — 29 olefia|y

Buideyog-ap & Buideys 1p owyobe — |0 oele|y
def-1ie.||op ayooads g2 2L

Ijiqesijdde eaiyoads Ip IJUSWINSOP 8 BH[BIBUSE) L' 2L
def-ie||@p ayonsualRIRD 3)|0p BolY0Rds 2721
lledauah JuoIZEULOI |72

OSHAVDHIY L1

uswiisiiy £°91

QWY WA BUDNSLISREIED FZ 9L

BUUSUE,|[2P 2 BOQ E||2P 3UOIZE||EISU] IP 1I0UIA L'Z9)
deb-Jie.|jop auopsLEyElED Al19p eoyoads Z'9)

||edaual juojzewlow L9l

aqasd dvordiy 9k

ainieiyooasedde 2 ns iusinbay 551

aull-yo oo} |ns Ipsinbay 5L

0pJOQ-Bll3} ENUIIUOCDISIP SUOIZED IUNLWOD B| Jad BZZaINdIS IP O_._W_JTUI £81
alola Ip ashed ||igissod aj|ap @ ajualquie ||2p auoiZiuad 25|
ABajeng Buipo) ejj@p auoiziuyaq 15l

ADILVHLS DNIGOD §1

EOQ —13P0J U BZUBLSIA Z ¥}

BlljRIaUSD |pL

YOg— H3aO0ON3 VIOOV4HI LNl +}

ajeucsiad |ap auoizewlod E|

€SS 3 1SS VHL VIDOVJHALNI - O ANOIZIS

]88 g2k
188 221

2P - — — = —— — —
oneod ¥ XXX £l SI °HS D1 1g™=Urd

FTWHANID FDIANI— LWDS

e ¥ X T § BS 5L iGeweo| STVHANID 30I0NI- LADS
IUYNIAITEHd
PHLLPELE YIS
YW3LSIS 1A LLISIND3H 130 ¥OI4ID3dS FNOISLAST
&

JHYNIAINFHd
YNILSISIA 1USINO3Y 133 ¥2I4103dS

&

UCHILLELS VEING
INOISLEAIT

50

BZZAINDIS If IALBLILEND ISINDSI 1B BUDIZRIO|Y 'S4 LIND BWEISIS - Il OLYDITIV =
aJeuILIRIE AVY ISIBUY ‘S LIND BUWAISIS - [1OLVDITIV »
sishleuy piBzeH ABUIWISID - 1OLVDITIV =

FHYNINITIHS SWyd ISITYNY <

I IWNTOA TV ILVO3TTV

1WNOE T3J INLYIddY IHYNIDS 12

lllqe e aj|ep sudiziuiaq 9702

Mayosed 18P BU0IZIUYAd 25702
meuased 19p eisn 1’50z
nayosed 1op aiBojod) ajjep sucisusisa 50z

1H2Y20edOLOS 9P BUOZIUYAT 2+ 02
wayooedolios 19p BISIT L'+ 02
Hayossedoyos 1ap aUCIZUSSA] $°0Z

neyooed lep auoiZziuleq 2°¢ 02
mayooed jap eism L'E 0%
mayooed |1ep auocizuosaq £0Z

1l1GeUEA BI[2P SUOIZIUYAA Z0Z
weyooed jap auciziuyeq 1707
LINOS OIDOVNONIT 130 ILININOJWOD 02

ewweifala) [2p J2PEAH L6
ewweiBaje} |2p ojewiod ZGL

ewalsIS 5Z
INOIZVZZITV3AY - © ANCIZIS

BUIBISIS +Z
ANOIZYDOTONO — 4 IANOIZ3S

ewalsis £z

I'd UN Ep ESS3LWSE.} 2UO|ZEWIOJUL,||2P BZUISISUCD § L 6L
I'd &4} opuaweundde e aaje a4 ajobay ¢ 161

“Td &4} ojuaweiunddy 161

OAJJELLL OJU] OJUN 3P SLRUIPIO0D IP BLISISIS Z'L°6)
OAIIBULIOLU] OLUNg IP aUoZIuRad kL6

OAJLBWLIO| ojund |ap BZUBISISUOD LGl

FTVHIANTD INOIAHOSIA &1

IANOIZV.LNANIY3dS -3 INOIZ3S

ajeubias |p oledplue Td 522

ezuepuopi +'Z2

nueweunddy gzz

I'd 12U 200q 2|elo} 0JaWnuU 2| d [2U Eoq AuoiZIsod ZZZ
JUOIZEWOLU] BUO|ZaUId | ZE

|W|UCISR P2 IUCIZEIAIOOY £8L
ojuaWuail Ip juawnaoq 28l
ojuawnoaop |9p odoog LgL

N UTVHINID 8L

0QH04 10 3 vdH311d VAILSISOLLOS
vdd INCIZ¢OINNNOD ¥1 H3d ILva OLVINHOd - INOIZ3S

310934 zz
e ¥ X T § BS 5L iGeweo| STVHANID 30I0NI- LADS
IUYNIAITEHd
PHLLPELE YIS
YW3LSIS 1A LLISIND3H 130 ¥OI4ID3dS FNOISLAST
&

ool ¥ X T § BS 5L iGeweo| STVHANID 30I0NI- LADS
IUYNIAITEHd
PHLLPELE YIS
YW3LSIS 1A LLISIND3H 130 ¥OI4ID3dS FNOISLAST
&

51

2113} IP BLWAISISOLOS (9P IAIMMUISOD UaWNooa L'g'9
opeboud 1p nuawnoog g9

|wwesbalel lep aucizeyaboid |p ellepoly 279
Sd4-dLv lwuweifiajoy ojewiod g9

oljeBoud 1p suoizejuawnsog 259

3] auoizajoud 2 eua} Ip opuawebajon 959
Japooua |pewle ||Bap aucIZElUaWIY 559
Japodua 8 SOV BJ} SIEMIJOS EIDOBHAIU] 59
ayoiels albojousal ayo|sy 200BRHAU|] E£5°9
lleuoizipey} 316ojouda) ayoisy aooepAlUl 259
ayaifo| sosepeul 159

200BHaEUI 9|9 B}I[EPOW @ BZUBISISUCD 59

INOIZYLS3Hd +

e0Q 8 19P0oUS OJUSWEUCIZUNY IP IBIS £°E
eoq uoizUnd Z°E

Jepoouy Z'LE
eopsoubeiq |'L'g
Japoou@ uoizungd |E

159 7130 IMVdIDNIHd INOIZNNd €

Id 18P OlUaWEBUOIZISOd LL'+9

1LWOS 2[eizied auojzajoid @ ooywg uoo eylsab eaur 0L+g

ajeba|| oUEUIq NS BIOJELW B||8P SUOIIS®YD §F'9

BUWIIS|S [EP BLOSN,||9P 2UONSAD 849

OSH B[|9P 2U0|ZIBSUISIP/AUO|ZIaSU| BILaLI0D B||2P 0]|0JlU0D |8p BUoISeD I't'9
1UoIZIPUOD 3je ojjadsu auoizeliwi| B[|ap aUolISaD 9+Q
8110034 IP UOIZNPY 2||3P BUONSAD 519

JU9WELUI||_I 3P AUONSAD t'H'g

Bau|| B[|8p Mieweled |ap suoliseD £g

ojuawe eubas |ap auolsan Zt9

essewald L+9

lAeULCY JUng 19p esod e|Jad ajobay +9

HezZzi|in luoizelaaiqqe pa juiuual €9

auojizeyaboud e|aad indul Ip puawnaoq z9Q

auoizepaboud 1p eHAY L9

YHHILIJ YWILSIS OLLOS 130 YOINDIL INOIZVZZINVDOHO ¢

1SS 19U yuasg auozensifed Z°5

pieubewWeaE LISINbed +EZ
RIIYY Wsinbad E'Eg

188 |9p IAlysods]

ainje|ysoasedde ajj@p EoMgqe) Ul OpPNE|ICD §ZZ
auozUANUEN t+ZT

neseddy esyliep @ aucizeunbyuod £Z°Z
Iwweibaja) auoizelauany zZT

wwedfele] auoizeyabold 122

opoddns Ip sjo0] Z°Z

aooepall Z'LE
1SS 19p eseddy 1'LZ
1SS [2p _InjalyoY L'Z

1SS T3A FHOILSIHILIYHYD T

olesBajul conisoubeip rwals|Ig LG
185 |au eopsoubeig 11g
auojzuainuey @ eoisoufielg |

ILNIAT INOIZYHLSIDIY 3 INOIZNILNANVYIN ‘VOILSONOVIA §
eog ¥

" BLISY IP BWAISISOHOS [9P BHA IP 001D Lt7L
6Z105NT @ 8ZL0SNT 9Z 105N DI TANTO

8AlEULIOU OPUCdaS]SS [ep euocizezzieal e| Jad oanezziuebioc ossedold L

SHS B| IU2NIIS0D |WN|OA BWAYRS E7)
auojzes||ddy |p ajelaual olsauon ZL
oluawnoog |op odoog L
VSSIWIHd |

MG [IUBWEUOISUAWI] E'LY
MH lJUWEeUoISURWIg 2Lt
gisodsy 1p 1dway 1Ly

1SS -V aNOIZ3AS
vdd31 10 YINILSISOLLOS SHS - ve AWNT0A

Japooug |t
i) ¥ WX Tf @ §8 5I 1a=we ITYHANITO IIONI - LWDS
JHYNIAINFHd
UCHILLELS VEING
YNILSISIA 1USINO3Y 133 ¥2I4103dS FNOISLIAST
&

chipel
oneod

¥ XXX EF S| HS D1 10=ueo FTWHANID FDIANI— LWDS

YNILSISIA 1USINO3Y 133 ¥2I4103dS

JHYNIAINFHd
UCHILLELS VEING

INOSSLAST
&

52

ajezzeld |p aysyMeA LELL
ossadoud sucizuossaq £11

1ssaubul gL
aysinapadoud 1se4 ||
ILN¥IdWI 17930 YOINDI L vOIJIHIA LL

auojzuanuey Ip ousibay oL
neJeddy auojzeanBiyuoy 1p 2|14 18p 2ucizelauan g9 0L
Ile2iEl 1P BISI B13p SUOIZEIALAD 5L
1NDS 121BWaYDE |UBld BUOIZEIBUID 0|
owueidwy Ip eq 2j|2qe L suoizelauayy g oL
Sl PHEWAYDS ILEld 18P SuoIZRISUSD Z70L
EL2] IP 1EQ aseg auoc|zelauan | gL
ANOIZNILNNYI
3 0aNYTIOD “¥OHIHIA FNOIZVHNDIANOD “INOIZVLLIOOHd 10 ILLINIWNLLS 0k
fiojes g6
IUSINUEN “BHIIGEPILY 26
1SS I8P UyuoD 16
SWYH &

1SS 12 eHIquodsia ‘e

auosn v'se
ossaooud 2U0IZHISEd E£5°8

1ssaibu z'58
ayonnepadoid 1sed L5
ewissew |p opabold ¢'g

aseq |p opaboid tg
aleuiwijeid opabold g£g
ossasoud |ap ajeieuab sucizuosaq 2§

|wuo.oe 3 JUo|ZeIARIqaY ‘elbojoululal |8
YHHIL 1A YWALSISOLLOS T30 INOIZVLITD0OHd 8

wols|e @ zuedipe eoq ol eUCl £1°2

JeUl] | 3[eSI2ASEI] BOQ E[|3P BSOd 'L L
eulq je 2jeuipniiBuo| eoq e|jap esod L'zl L
oplesue eoq ol66eluol Z1°2

(ALd) neplep iwwesBaja) 2|1 19p aucizeacudde @ eoylap 828
{ALd) 1epiea nuwelbaja) a4 19p auoizelauany £°2°g

{1pD) lWweibala] 1ep ajjeqel 2||@p aucizeacsdde a eoyliep 928
(1LpL) lwweiBaja] 1ap a||2qe | 2||2p auozeJaUay G2

1LNDS 1DEWaYSS IUeld 1ap aucizeaosdde @ eoyyuap +'28

LNDS 1Pl1eWaYDS |UBId aUoZRIaLRD B'Lg

oAllhoes3 onalicld |8p BUSISIARH E°2°8

aysnhapadoud 1seq4 |28

oajnAso2 opgaboid 18

oufie|u) asianel) ns olbBelUON ELL 2

~dre-o u) esdenedl ns olbBeluol 2112

1Hoddns 18p |[eUOISUBWIP 8 BAIIINIISOD BUDSREIED L' |LL°2

aoqJad jpoddng |12

304 37134 1LHOddNS 134 ¥SOd ¥1 H3d INOIZYHNSIN 10 OLNIWNYLS 012
OAED |2P BUOIZUNID 2

l[BUIWLIB] 2)18SSED B|[B CJUBWEISPIY 182
IAED |9p ojuewwelsalie,| Jad aaeiado ellepoN 872

.eBuBsO|, B OPOlAW || UCD OULIBYDS IP BIOHNPUDS [ap oluawebalop 272
OAED |8P OlUBWEISBUY 22

1AL 8||8p sucizeaocudde a eayjuep +'9g

(laa) oweidw) 1p neq ajjleqe] auoizeisusn £gg
LWOS 1PIEWBYDS Iueld 2'9°8

aysnhapadoud 1seq4 |1'g'g

oAlihoase opjaboid 98

(1Lag) 2L 1P 1B 2584 BII2P 9 SI PIIBWALRS |UBld 19p suoreacuddy 158
(1Lag) eua) 1p Heq ased B(|2P @ S| PHEWAYDS JUB|] |9 SUCIZE2IAUID 958
ellIqeSUCCSal BUOIZIUYSA 5578

l|eulwIR] a)assed ajjau e ossalbul Z'gz
Wazzod L'9°L
1aeo esod ualuD 92

B0 2[EU| WS} BBSSED — J8Podua ojueweRa| |0 Ip oABD 52

eoq e||e ojuawebal|od Ip oRBD 2

@oq |ned auo|zejoud |p BUIEND £72

2UdasioN 7L

aleu W] BIESSED |2

YHHAL 1J YWALSIS NMVIHALYW SNOIZvZZLN Id YLOYaon 2

sl ¥ X T § BS 5L iGeweo| STVHANID 30I0NI- LADS
IUYNIAITEHd
PHLLPELE YIS
YW3LSIS 1A LLISIND3H 130 ¥OI4ID3dS FNOISLAST
&

j{Ted) ¥ X T § BS 5L iGeweo| STVHANID 30I0NI- LADS
IUYNIAITEHd
PHLLPELE YIS
YW3LSIS 1A LLISIND3H 130 ¥OI4ID3dS FNOISLAST
&

53

ooljels o|iyoid |ap 0|00 [BD L'GZ
U2J} 19P BLIISSEW BLOCIBA 9C

oljawiydeyl |ap auolsan ¢1°5'z
auolzelqi|ediy EL'5Z
OULI3) OUIL IP O||OJIIOD ZL'ET
E|OJEW |P OSUSS [BP auoIZEU|WLale] |15
Buo|Zela|a00. "B}00|9A ‘O1ZEdS 0[00 D 015
oJUBWEHS / cluaweujied |p 0SED Ul 3YD (LB WAUID ||IGEUEBA 3[|ap 0|03[BD §'5°Z
'] |8p 0|00[eD B'EE
8uUo|Zel8|300E B||ap 0[03|eD ['§E
BHDO|2A 0[00|ED 9°5°F
nuawes
nuaweued 1p ezuasse ul (esioocuad ezueisip e|lap ©) oizeds ojep 0|02BD §5Z
liojesauab e aaljeal UoIZE WIOU] 2|8p suoiZisinboy 52
nesn Loesaualb 1p odil g'5°Z
ossalfiul Ip e 2572
auoznpoaul 1'SE
ayolaWopo UolzUnd §°Z

WPd I8P BLAllRIRdO 72
oual} 1ep ausIZNpoU] £°Z

gs§ |9p auoiziesuisia 2°Z
485 op suoiziasyy |'g
855 T30 ITYdIONINA INOIZNNY Z

11Loaodd Lt
WYHHIL Id YW3LSISOLLOS 91
INOIZVOOTONO S1

ayonesd eyun 125 b1
1E1403} 1P AUDIHEPIP BHUN & L'E W)
oiawe.seppe,| Jad 1EZZIINN IPOIAN Eb)

1onaubewoaiale usinbay v+ 1L

wlewp IHsihbay £4L

1o1uBDOaW IHISInbay Z'v L

ouyele sinbay LvL

gssg 19p ajisods|p ap pIuda) lusinbay ¢7L

ojuawelisappe Ip ewwelbold 22 ¥L
ayonsUaneled 'YL
ooisiieloads o 19AIT 2tk

S8 UCD aUO|ZE[2J 040| @ 3|IqELO. [ap IAlNsodsIa ZE L
ASS 19p musodsia L'E'L
HSS 2P einPaliysa4y g7

9S8 13p BZUAISISU0OD 7}
D3713AN3ID 2uLIoN opuedas oanezziueblo ossaooud |1
VYSSIWAHd |

00404 10 YA31SISOLLOS - vE JNNT0A

ojuaweljsappe |p ewwelfold 'L b1
SUONSHIREIRD L7 |
ajesauab of|pAIT L't

FTYNOSHId 7130 FTYNOISSTJIOHd INOIZYWHOL +)
auo|zuaihuew e|jep suoizezziuebio gL
ANOIZNILNNYW £}

158 Inopoud auolzeuawnoog zZL

LSS auo|zejuawnsoq L gk

JNOIZV LNIWNNODOA 21

eHjIqesUodsal suoiziuad §LL

auesn vLL

OJUSWEUOIZUNY IP SUOHHAA EE L L
euIqeD Ip auyouaual auolueA 28 LL

aws ¥ X T § BS 5L iGeweo| STVHANID 30I0NI- LADS
IUYNIAITEHd
PHLLPELE YIS
YW3LSIS 1A LLISIND3H 130 ¥OI4ID3dS FNOISLAST
&

) ¥ X T § BS 5L iGeweo| STVHANID 30I0NI- LADS
IUYNIAITEHd
PHLLPELE YIS
YW3LSIS 1A LLISIND3H 130 ¥OI4ID3dS FNOISLAST
&

54

INOIZVLSTAHd LI

eojiels eopsoubieg z'g 0k
esjweulp eapsoubelq 1oL
oulalsa oo} ep ealsoufielq ok

opedBap Ip |UoiZIpUGD Ul [UojZUN] 29

9SS |9p auojzZuainuen g°¢°0

1D eapsoubelp e|ins puaaa aucizensibay 1'z0k
Lo esysoubeig Z0k

|juepisad eofisoufelq L0k

455 13d ¥OILSONDVIA 0}

aaesado ejEPON 219
nep juojzejaidiaiul 1°1°9
HIBULICU 1P UOIZIPUOD Ul JUORZUN |9

1WOS 9

opJoq Ip eosoubeig +§

opioq Ip oo_amocmw_—u BLUDISIS NS lJUand QCO_NEE_UQI L'E6
opiog Ip auoizisodsiq €6

ayoyesbiyoey apund ns auoizensibay Z6

opeJBap Ip U0

PUCD 55
HA BZUablawa |p oluaAIBIUL,|[8P OlUBWER|INUUY 7§
oA ezuabiawa |p oluaAI £

ajuelifia [8p elAllERdO 275

ow4a) ouadl Ip AuUoIZIUea LS

JINVIDIA &

(asg) op.og Ip BWeISISCUOS B ST BWAISIS [EP IMalSRIL 1Bd L6
HEZZUOWAW [P |3p AUOS3D E'1°6

uoizeucpul 3|j2p olbfeleales 16

aieyisiBas ep 1 116

.SK1.. BHOPUOD |P OAIJEULIOJU| BLIBISIS NS NlUaAa auoizeisiBay |6

©OQHOdg 13 ¥OILEONDVYIA 3 ILNIAT JNOIZWHLSIDIY &

opeiBap Ip IUOIZIPUOS Ul lUOIZUNY ZF
BH[BULIOU IP IUOIZIPUCD U] JUOIZUNT |t

opesfap Ip IUOIZIPUGS Ul JUOIZUNY 28
BH[BULIOU P |UOIZIPUOS U JUOjZUN |'§
OSHO IWDS €

opedBap Ip UoIZIPUGS Ul [UO|ZUNS 272

VHAONYW ¢

«LWNDS + DS, 5TE
OSH., oAnelado opow |ns UCIZISURL] +Z°E
LANoS,, ETE
wauelfin, TTE
L'2E

1Aesado |pow 2 11BlS B4 UOIZISURI] ZE

Injjesado |pow @ pels (IBep ueiziuyea 1
IANLVHI4JOIGON A 1LVLS €

UoL2 JUCSID 6T

anesado BEPON EL°L
1ep auoizeudial z'1°2
11EP BUOIZEDIUNWOD |'|°L
Bl|ELLIOU |P IUOIZIPUOS U] UOIZUNY |°2

qeldeA @ |BGessaw (oplog B aSSaWSEI} IUOIZELLIOMI] £'9°Z
EIOJEW |P OSUAS aUOIZEOUAP] Z'8°Z

denJiy @ Abaiens buipon 18z

ouall-ela} IUoIZBIIUNWOD §°Z

oualy oulel eljepow @ ezuablawa Ip einjeuald g

BYOO[2A IP O|[0IUCD E'GE
oojweup ojoud |ap 0[O0 8D Z'9Z

osH 2
sl ¥ X T § BS 5L iGeweo| STVHANID 30I0NI- LADS
IUYNIAITEHd
PHLLPELE YIS
YW3LSIS 1A LLISIND3H 130 ¥OI4ID3dS FNOISLAST
&

el ¥ X T § BS 5L iGeweo| STVHANID 30I0NI- LADS
IUYNIAITEHd
PHLLPELE YIS
YW3LSIS 1A LLISIND3H 130 ¥OI4ID3dS FNOISLAST
&

55

FTYNOSHId T3A ITYNOISSIIOHd INOIZYWHOd 02

ANOIZNILNNYWN &)

2YoUUaA 781

HESS30aU IUaWNIS +' 18}
eaoJd |p Joday £°1°81

ayoijuana ajjap onabbo ainjeiyooateddy z' gL
auojzeajjooe |p odwed |18}

el[eJaUaD |G|

OIZIAH3S NI VSSIN v 3 ¥OIJIH3A ¥ H3d 3HNA3D0Hd 81
ass suoizeinfyuon 21

2|I1q.10. [BP IASOdSIP UGS IUoIZRIBH Z'E LK
4SS 19p musodsia L'g Lk
auo|ze||eisul Ip Isinbay Z72L

nqeled L4
988 130 INCIZVTTYLSNI L1

INOIZV LNINNDOA 9t

ANOLZYDOTONO d3 ANOIZVLINIWIHIALS St

1aNY 1100 3 IA0Hd tE

BaUI| U] ||BUCIZUNY BYDLIBA £
o}is0dap/EUIdIHO Ul [|BUCIZUNY SUDYLBA 2
ayonels aysRLaA L'Z8L

LBA JUBWINAS &' LB
auozeanByuocd Ip |0OL ¥ L°EL

OLIOIEIOGE] |P 2JOIEINWIS £ °E

BUIDIHO 1P IORINWIS 2 L°EL

aenod alolgnuig |°L°EL

OPNE[|02 @ BUCIZUBINUELW IP QUAWNAS L'EL

OANYTIOD 3 INOIZNILNNYI ‘THOIZVINWIS IA INLSOdSIa €1
fajes 5zk

eylquuodsia v'zk

usnuen £z
ASS BHIIGRPIY 221
RUCICIEDL WA

oNBo4 ¥ 00X €L S °HS DL ig=umo TTwHINTD IDIANI — LWDS
IHYNINITLd
VHILLAS LS VEHINS
YWALSIS IO 1USIND3Y 13d ¥OI4I93dS FNOISLAST
L

SWVH 2}
odlle:d S oo = = o= = = ; _
e ¥ WX Tf @ §8 5I 1a=we ITYHANITO IIONI - LWDS
IUYNIAITEHd
PHLLPELE YIS
YW3LSIS 1A LLISIND3H 130 ¥OI4ID3dS FNOISLIALT
&

56

Bibliography

[1]

2]

[3]

[4]

[5]

[6]

[7]

18]

[9]
[10]

[11]

M. Felder, D. Mandrioli, A. Morzenti. Proving Properties of Real-Time
Systems Through Logical Specifications and Petri Net Models, Report no.
91-072, Politecnico di Milano, 1991.

M. Felder, A. Morzenti. Validating Real-Time Systems by History-Checking
TRIO Specifications, ACM Transactions on Software Engineering and
Methodology, Vol. 3, No. 4, 1994.

A. Morzenti, D. Mandrioli, C. Ghezzi. A Model Parametric Real-Time
Logic, ACM Transactions on Programming Languages and Systems, Vol.
14, No. 4, 1992.

A. Morzenti, P. San Pietro. Object-Oriented Logical Specification of Time-
Critical Systems, ACM Transactions on Software Engineering and Method-
ology, Vol. 3, No. 1, 1994.

M. Michelacci, Specifica dei requisiti funzionali del sistema controllo marcia
treno, Ferrovie dello Stato, Divisione Infrastruttura, Italy, 1999.

M. Michelacci, Specifica dei requisiti del sistema controllo marcia treno:
Volume I, Ferrovie dello Stato, Divisione Infrastruttura, Italy, 2000.

M. Michelacci, Specifica dei requisiti del sistema controllo marcia treno:
Volume II, Ferrovie dello Stato, Divisione Infrastruttura, Italy, 2000.

M. Michelacci, Specifica dei requisiti del sistema controllo marcia treno:
Volume II, Ferrovie dello Stato, Divisione Infrastruttura, Italy, 2000.

C.A.R. Hoare, J. He. Unifying Theories of Programming, Prentice Hall,
1998.

C. Heitmeyer, D. Mandrioli (editors). Formal Methods for Real-Time Com-
puting, John Wiley & Sons, 1996.

M. Joseph (editor). Real-Time Systems. Specification, Verification, Analy-
sts, Prentice Hall, 1996.

57

