
	
	
	
	
	
	
	

	
	
	
	

Proceedings of the Workshop on

Logics in Security

Organised as part of the European Summer School on
Logic, Language and Information (ESSLLI)

August 2010, Copenhagen, Denmark

Dov M. Gabbay and Leendert van der Torre (eds.)

i

Table of Contents

Secure communication of local states in multi-agent systems 1
Michael Albert, Andrés CordónFranco, Hans van Ditmarsch, David
Fernández-Duque, Joost J. Joosten and Fernando Soler-Toscano

A preference logic-based approach for Alert correlation 20
Salem Benferhat and Karima Sedki

Turst in complex actions . 35
Julien Bourdon, Guillaume Feuillade, Andreas Herzig, Emiliano Lorini

New decidability result for ground entailment problems and application
to security protocols . 50

Yannick Chevalier and Mounira Kourjieh

Obligations with deadlines: a formalization in Dynamic Deontic Logic . . . 65
Robert Demolombe

Logics for Access Control: A Conditional Approach . 78
Valerio Genovese, Laura Giordano, Valentina Gliozzzi and Gian Luca
Pozzato

Networks of Trust and Distrust: Towards Logical Reputation Systems . . . 93
W. T. Harwood, J. A. Clark and J. L. Jacob

Dynamic languages of propositional control for protocol specification 107
Andreas Herzig and Nicolas Troquard

Formal Definitions and Complexity Results for Trust Relations and
Trust Domains . 122

Simon Kramer, Rajeev Goré and Eiji Okamoto

A Multi-Modal Framework for Achieving Accountability in Multi-Agent
Systems . 148

Simon Kramer and Andrey Rybalchenko

ii

Secure communication of local states in
multi-agent systems

Michael Albert1, Andrés Cordón–Franco2, Hans van Ditmarsch2, David
Fernández–Duque2, Joost J. Joosten2, and Fernando Soler–Toscano2

1 University of Otago, New Zealand
malbert@cs.otago.ac.nz

2 University of Sevilla, Spain
{acordon,hvd,dfduque,jjoosten,fsoler}@us.es

Abstract. Given a deal of cards over three agents, we investigate ways
for two agents to communicate secrets by public announcements. The
problem to keep all of your cards a secret (i) can be distinguished from the
problem to keep some of your cards a secret (ii). For (i): we characterize
a novel class of protocols consisting of two announcements, for the case
where two agents both hold n cards and the third agent a single card; the
communicating agents announce the sum of their cards modulo 2n + 1.
For (ii): we show that the problem to keep at least one of your cards
a secret is equivalent to the problem to keep your local state (hand of
cards) a secret; we provide a large class of card deals for which exchange
of secrets is possible; and we give an example for which there is no
protocol of less than three announcements.

1 Introduction

Alice and Bob, draw a and b cards from a deck of a + b + c cards, and Eve, the
eavesdropper, receives the remaining c cards. Alice and Bob wish to communicate
their cards to each other by way of public announcements, without informing
Eve of any of their cards. The investigation of the generalized problem with card
deal size parameters (a, b, c) was inspired by its (3, 3, 1) instance that was coined
in [12] the Russian Cards Problem, and that originates with Kirkman [9]. A
standard solution for (3, 3, 1) is as follows. Suppose Alice holds 0, 1, and 2, Bob
holds 3, 4, and 5, and Eve holds 6. Alice announces that her hand of cards is one
of 012, 034, 056, 135, 146, 236, 245, i.e., one of the seven hands {0, 1, 2}, etc., after
which Bob announces that Eve holds 6. Another solution is that Alice announces
that she holds one of the five hands 012, 034, 056, 135, 246, again followed by
Bob announcing that Eve holds 6. We can view such solutions as the execution
sequences of an underlying protocol. Some general patterns and special cases of
card deal sizes (a, b, c) for which two-announcement solutions exist are found in
[2], but a complete characterization is not known.

We can relax the constraints for secrecy in the Russian Cards Problem some-
what. Suppose that the eavesdropper may learn single card ownership for Alice
and Bob, but just not their entire holding, i.e., the eavesdropper may not learn

1

2

the card deal. In that case, simpler protocols suffice. In terms of interpreted
systems, Alice and Bob attempt to communicate their local state to each other,
without Eve learning their local states. Note that, if Eve were to learn the local
state of Alice or the local state of Bill, she would learn the entire deal of cards.

A simple way for Alice to communicate her local state to Bob, in the (3, 3, 1)
case, is to announce that she holds one of 012, 034, and 056. In other words,
she gives away that she holds card 0, but this does not disclose her whole hand.
After that announcement, Bob as before responds that Eve holds 6. We may
call Alice’s announcement state safe, as opposed to card safe, above. There is
a relation to bit exchange problem: is it possible for Alice and Bob to share a
secret bit (i.e., the value of a proposition) by public communication. The seminal
publication for the latter is [7].

Motivation We are motivated in our investigations by the ground separating
unconditionally secure (also known as information-based) from conditionally se-
cure protocols. The security of the latter are based on computational features:
the intractability of some computation, a one-way function between some cryp-
tographic primitives, etc. It is tempting to say that unconditionally secure pro-
tocols are abstractions of conditionally secure protocols. But this high and dry
ground seems very poor: abstracting away from keys and one-way functions
seems to remove the essence from reasoning about protocols, and it is therefore
unclear what results for the abstraction have to bear on practical security mat-
ters and protocol design. We do not bridge that gap. But anything we do, aims
to bridge that gap.

Our slightly less ulterior motive is to design fast unconditionally secure proto-
cols for information exchange in multi-agent systems. Within the more specific
bounds that we have set, such as card secure protocol or state secure proto-
cols, we aim to find minimum-length protocols, to find the maximum number
of bits that can be exchanged, and to analyze multi-agent versions of protocols
(‘multi-party’ in security jargon; with ‘multi’ as ‘more than two’) where the in-
tention to securely exchange information about the ignorance and knowledge of
other agents (also known as higher-order preconditions in protocol execution)
inevitably draws in dynamic epistemic methodology. An additional challenge in
that setting is the reconciliation of what may be called more embedded methods
with the more abstract logical and combinatorial approaches. Somewhere on the
far horizon remains a link with conditional security.

Results This work contains the following contributions. For the card exchange
problem for card deal size (n, n, 1) we characterize a novel class of protocols
consisting of two announcements. In that case, we treat the set of cards not
as a set of (interchangable) labels as in design theory [11], but as set of con-
secutive numbers 0, 1, ..., 2n and employ number theoretical methods and brute
force (Haskell). The protocol is simple: both A and B announce the sum of their
cards modulo 2n + 1. The method has promising generalizations. Further, we
show that state safe is equivalent to bit safe, and provide a large class of card
deal sizes (a, b, c) for which bit exchange is possible (this should be seen as a

2

3

special case of results in [6]). These protocols typically consist of various an-
nouncements, without a claim that these are minimal. We also give an example
of a bit exchange protocol consisting of three announcements where no solution
of two announcements exists.3

2 Card deal terminology and known results

The three agents Alice, Bob, and Eve are abbreviated as A, B, C. Given a set/deck
D of d = a + b + c cards, their hands of cards A, B,C consist of a, b, c cards.
The card deal (A, B, C) is the triple of the three hands of cards, and we call
this a card deal of size (a, b, c). The cards in the deck may be called anything
whatsoever, but it is customary to name them 0, 1, ..., d− 1.

Given that cards are numbers, and that our examples use small numbers, we
allow ourselves some abus de langage. Consider size (3, 3, 1). For hand of cards
{0, 1, 2} we write 012 (and the cards in a hand always in this ascending order),
and for deal ({0, 1, 2}, {3, 4, 5}, {6}) we write 012.345.6.

We can distinguish the information requirement—what A and B are supposed
to learn from each other—from the safety requirement—what C is not supposed
to learn from the communications taking place between A and B. The informa-
tion requirement is for A and B to learn all of their cards (and therefore the
entire deal of cards). We call an information state satisfying that requirement
state informative. The card safe requirement is for C to remain ignorant of the
ownership of all of A’s and B’s cards; whereas in state safe, the requirement is
for C to remain ignorant of the ownership of at least one of those cards (and
therefore ignorant about the hand of cards of the other agents, their local state).

Protocols to solve these problems consist of a finite number of alternating
truthful public announcements by A and B, all of which are informative (trivial
announcements are not allowed), and where each announcement consists of a
number of alternatives for the hand of cards of the announcing agent. These are
not truly restrictive conditions: for a finite number of cards, there are only a
finite number of possible card deals, and each informative announcement results
in a reduction of these alternatives.

An information state is represented by a Kripke model for what agents know,
‘informative announcement’ can be defined as one resulting in a proper model
restriction, any complex logical statement that is announced is equivalent to an
announcement of a number of alternatives for the actual hand of cards, and all
states in (a bisimulation contraction of) that Kripke model are about different
card deals [12]. (Results we do not explain in technical detail here.) The various
safety and information requirements are formulas that can be checked in such
a model. In this work we only consider protocols of length two where first A
and then B makes an announcement, and protocols of length three where the
announcements are made by A, then B, and then A again.
3 This is interesting, because at the time of submission no such protocol was known for

the card exchange problem, although we have now found one for parameters (4, 4, 2),
and no other such example is known for the state exchange problem.

3

4

All the following should hold for any deal of cards for which a given sequence
of announcements can be made truthfully. An announcement is card safe / state
safe if it preserves ignorance of C of all cards / some card (the safety require-
ment). We will normally call them safe, and let the context determine if card safe
or state safe is intended. A sequence of announcements is a protocol.4 A protocol
is safe if it consists of safe announcements. A protocol is state informative if A
and B know the card deal after termination, i.e., if the information state reached
is state informative. (This implies that the last announcement in the protocol
informs the agent addressed by that announcement of the hand of cards of the
announcing agent, and that the second-to-last announcement informs the other
agent.) A protocol is good if it is safe and state informative.

In [2] some sizes (a, b, c) are listed for which good protocols consisting of
two announcements exist, e.g., (a, b, c) such that a + b + c = p2 + p + 1 for any
prime p ≤ a − 1, and (3, b, 1) if b ≥ 3, and (a, 2, 1) if a = 0, 4 mod 6. In a
two-announcement protocol the second announcement is always equivalent to
B announcing the cards of C. There may be protocols for (a, b, c) but not for
(b, a, c), e.g., there is a protocol for (4, 2, 1) but not for (2, 4, 1).

2.1 Subgroup common knowledge or public knowledge?

The role of common knowledge in protocols is of logical interest. The solution
requirements discussed in [12] and [2] are formulated for an actual deal of cards,
and not, as above, for any deal of cards for which the announcements can be
truthfully made. Given that, they are required to be commonly known. (The
contribution of [12] is to show what can go wrong if that does not hold, by an
analysis in public announcement logic.) However, there is a subtlety: it must
be common knowledge among all three agents, i.e. public knowledge, that the
safety requirement is satisfied, and it must be common knowledge among A and B
(also known as subgroup common knowledge) that the information requirement
is satisfied. An open question remained if the information requirement should
also be publicly known. If not, Eve is uncertain whether Alice and Bob have
terminated the protocol. In all known cases of this kind, announcing that the
protocol is finished then results in Eve learning some of Alice’s or Bob’s cards. We
investigated the matter thoroughly but not exhaustively, and were also greatly
helped by the program DEMO [13] for model checking dynamic epistemics. An
open question remains:

Are there protocols after which it is common knowledge to A and B that
they know each other’s cards (and thus the card deal), and where this
is not public knowledge, and where the announcement is safe that the
protocol is terminated (after which it is public knowledge that A and B
know the card deal)?

4 Strictly, it is only an execution sequence of an underlying protocol; see the section
‘Further Research’ and the example on page 13.

4

5

Open questions are nice, but they should be relevant. The literature on security
protocols suggests that this is not an interesting question:

A time-honoured principle by Kerckhoffs [8] states that the safety of a pro-
tocol should not depend on whether the protocol is public or not, with the
exception of the ‘private’ keys of the agents performing in the protocol. For card
deal protocols the role of the private keys is played by actual hand of cards of A
and B. Protocols ending in common knowledge between A and B that the secret
has been exchanged, but where this is not publicly known, are therefore ruled
out.

If we do not reason from the perspective of an actual deal of cards, but from
the perspective of all cards deals consistent with the announcements made so
far, the discussion on subgroup or public common knowledge evaporates: the
information and security requirements should then be model validities, from
which it follows that they are publicly known. From now on, we assume that the
requirements should be met for any card deal consistent with the announcements.

3 Card safe protocols for size (n, n, 1)

The five hand solution for the (3, 3, 1) case is also known under the form of
the ‘sum modulo number of cards’ [10]. For example, when Alice holds 012, she
announces that the sum of her cards modulo 7 is 3. There are five hands of
cards having that sum: 012, 046, 136, 145, 235. Not all hands in the five hand
announcement 012, 034, 056, 135, 246 in the introductory section have the same
sum, but subject to the permutation of cards s(0) = 1, s(1) = 0, s(2) = 2, s(3) =
4, s(4) = 5, s(5) = 6, s(6) = 3 it can be transformed in the modulo 7 solution.
And instead of responding by announcing Eve’s card, Bob could equivalently
have announced the sum of his cards modulo 7.

In [2] an 18 hand solution for (4, 4, 1) and a 66 hand solution for (5, 5, 1) are
given, but no general method was known for (n, n, 1). In this section we will
present conditions for (a, b, c) for which the announcement by Alice and Bob of
the sum of their cards is card safe and state informative. For (n, n, 1) the answer
will be: always, if n ≥ 3.

It should be noted that the sum announcement is not always safe. For exam-
ple, take card deal size (4, 2, 1). Assume that A holds 0123. It is not (card) safe
for A to announce that the sum of her cards is 6. The quadruples summing to 6
are: 0123 0346 0256 1246 1345. If C holds 4, then she learns that A holds 0.

Let
∑

A denote the sum of A’s cards modulo d, and similarly for other agents,
and for the deck D = 0, 1, ..., d− 1. For our purposes we can equate D with the
ring Zd of d elements, and + to the sum operation defined on that ring. The
announcement by an agent of the sum modulo the total number of cards is called
the sum announcement, and the protocol consisting of A and then B announcing
their sum is called the sum announcement protocol.

First let us note that if c = 1, the sum announcement informs the other agent
of your cards.

5

6

Proposition 1. If c = 1 and A announces the sum of her cards, then B knows
A’s cards.

Proof. Let x denote C’s only card. Then B can easily compute∑
Zd =

d(d− 1)
2

This sum is actually 0 when d is odd, but this is unimportant. We then have the
equation ∑

A +
∑

B + x =
∑

Zd.

Clearly, after A’s announcement, B knows all the terms in this equation, and
thus can easily solve it for x. Agent A must then have the remaining cards.

The same argument applies if B announces the sum of his cards, so that:

Corollary 1. For (a, b, 1), the protocol where first A announces the sum of her
cards and then B announces the sum of his cards is state informative.

A direct result from the proof of Proposition 1 is that

Corollary 2. A good sum announcement protocol for (a, b, c) is also good for
(b, a, c).

As we have seen in Section 2, this is not necessarily the case for other than sum
announcement protocols. Now, let us characterize (card) safety. Consider the
‘pair swap’ property:

Pair swap (for A)
For every x0 ∈ Zd and every deal (A, B,C) such that x0 ∈ A, there
exist x1 ∈ A and y0, y1 ∈ B with x0 6= x1, y0 6= y1, and x0 + x1 = y0 + y1.

(1)

Proposition 2. Suppose that the triple (a, b, c) satisfies pair swap for A. Then,
C does not know any of A’s cards after

∑
A is announced.

Proof. Let x0 ∈ Zd. Suppose that pair swap for A holds and consider any as-
signment (A, B,C) with x0 ∈ A. We will produce a new assignment (A′, B′, C ′)
such that C cannot distinguish between (A, B,C) and (A′, B′, C ′), even after the
announcement of

∑
A, and x0 6∈ A′. This means that C cannot know that A has

x0, and since x0 is arbitrary, C cannot know any of A’s cards.
Pick x1, y0 and y1 satisfying pair swap for A and set

A′ = (A \ {x0, x1}) ∪ {y0, y1}
B′ = (B \ {y0, y1}) ∪ {x0, x1}
C ′ = C.

Then, C cannot distinguish between (A, B,C) and (A′, B′, C ′) because her cards
are unchanged, and ∑

A′ =
∑

A− (x0 + x1) + (y0 + y1)
=
∑

A

6

7

(because x0 + x1 = y0 + y1). Thus A would have made the same announcement
in both cases, and C cannot distinguish the two deals, hence cannot know that
A has x0.

Here we must note that it does not matter whether A announces
∑

A or B
announces

∑
B as far as C is concerned, since she can compute one using the

other. Hence for C to remain truly ignorant, we would want not only pair swap
to hold for A but also the analogous property we obtain when switching A and
B:

Pair swap (for B)
For every x0 ∈ Zd and every deal (A, B,C) such that x0 ∈ B, there
exist x1 ∈ B and y0, y1 ∈ A with x0 6= x1, y0 6= y1, and x0 + x1 = y0 + y1.

(2)
It is clear that an announcement is (card) safe if (1) and (2) hold.5 We

will now investigate when they hold. For this we need a combinatorial theorem,
conjectured by Erdös and Heilbronn in [4] and proven by Dias da Silva and
Hamidoune in [3]:

Proposition 3 ([3]). Let d be a prime. For a set A ⊆ Zd, denote Sn(A) as the
set of all sums x1 + ... + xn of n distinct elements of A. Then,

|Sn(A)| ≥ min
{
d, n|A| − n2 + 1

}
.

In particular for a prime d, any set A defines at least 2|A| − 22 + 1 = 2|A| − 3
sums of pairs, if not all of Zd. This gives us the following:

Proposition 4. If d is prime and both

2a− 3 + (b− 1) ≥ d + 1
(a− 1) + 2b− 3 ≥ d + 1,

then announcing
∑

A (or
∑

B) is card safe.

Proof. We must prove that (1) holds, as well as (2). The situation is symmetric
and we shall only prove the former.

Given a card deal (A, B,C), pick x0 ∈ A. Then,

|x0 + (A \ {x0})| = a− 1

since x0 + x1 = x0 + x2 would imply that x1 = x2 and hence we get one distinct
value for each sum x0+x1. On the other hand, by Proposition 3, |S2(B)| ≥ 2b−3.
Since by assumption

(a− 1) + 2b− 3 ≥ d + 1,

we see that
|x0 + (A \ {x0})|+ |S2(B)| ≥ d + 1.

5 The two conditions also imply CA2 and CA3, respectively, in [2].

7

8

Now, there are at most d different sums modulo d. Therefore, by the pigeonhole
principle, two pairs must have the same sum, and we can find

z ∈ (x0 + (A \ {x0}) ∩ S2(B)

satisfying (1).

In the case of (n, n, 1) we do not need d = 2n + 1 to be prime, due to the
following proposition.

Proposition 5. If |A| = n ≥ 9 and A ⊆ Z2n+1, then |S2(A)| ≥ n + 3.

The proof of Proposition 5 is found in the appendix. This gives us the following

Corollary 3. For any n ≥ 9, announcing
∑

A is card safe in the (n, n, 1) case.

Proof. For n ≥ 9, we note that given a deal (A, B, C) and x0 ∈ A we have
n− 1 different sums of the form x0 + x1 with x0 6= x1 and x1 ∈ A. Further, by
Proposition 5, |S2(B)| ≥ n + 3, and since

n− 1 + |S2(B)| > 2n + 1,

there must be an element of Z2n+1 which can be written both in the form x0+x1

with x1 ∈ A and y0 + y1 with y0, y1 ∈ B. These elements then satisfy pair swap
for A. Once again, pair swap for B follows by symmetry.

We also have that

Lemma 1. For any 3 ≤ n ≤ 8, announcing
∑

A is card safe in the (n, n, 1)
case.

Proof. The case for 3 started this section. We have used a simple Haskell script
to check that the sum announcement is safe for 4 ≤ n ≤ 8. (And we also note
that, independently, the cases (5, 5, 1) and (6, 6, 1) are treated in [2].) Indeed, we
have checked not only that the security result remains true for 4 ≤ n ≤ 8, but
also that the method of proof employed in Proposition 2 applies equally well.
Namely, for each 4 ≤ n ≤ 8, in every card deal of the (n, n, 1) distribution, each
of A’s cards can be interchanged in a pair with a pair from B’s cards with the
same sum (modulo 2n + 1). Pair swap for B follows by symmetry. The Haskell
script and some further explanations are found in the appendix.

From Corollary 1, Corollary 3 and Lemma 1 we now obtain that

Theorem 1. For n ≥ 3, the sum announcement protocol is a good protocol for
size (n, n, 1).

Protocols for one announcement Alice and Bob can announce their sum at the
same time, and this is card safe and state informative. So we can shorten the
sum announcement protocol into a single announcement protocol. This is an
elementary observation, but still remarkable: for the protocols in [2] (and for all
other card protocols that we know off) Bob can only make a specific response
after Alice’s announcement.

8

9

Protocols for more than two announcements For (a, b, c) where c > 1, the two
announcement protocol of both agents announcing the sum does not work. From
A’s announcement, B still learns the sum of C’s cards, but two cards that are held
by A instead of C may also have that sum. It is conceivable that B then makes
some other informative response (other than announcing his sum of cards!),
from which A learns his cards, and may then make yet another announcement
informing B of C’s cards. In other words, number theory may assist us to find
good protocols consisting of more than two announcements. For that, we also
need to be more general than just swapping pairs.

From swapping pairs to swapping n-tuples Interestingly, in the original Russian
cards problem for parameters (3, 3, 1) the swapping pairs argument for showing
safety fails. Let us consider the card deal 013.245.6. There is no pair of cards from
013 with the same sum as a pair of cards from 245, for otherwise the remaining
cards in each hand would be equal since 0 + 1 + 3 = 2 + 4 + 5 modulo 7. Observe
that, however, safety can be easily shown by a swapping triples argument: it
suffices to interchange the whole players’ hands. Indeed, this is a general fact.
Given a card deal of the (3, 3, 1) case, if the sum of A’s cards is different from
the sum of B’s cards, the swapping pairs argument works. Otherwise, safety can
be shown by exchanging the whole hand of both players.

Employing Haskell, we have encountered several other examples (than (3, 3, 1))
where card safety can be shown by a swapping n–tuples argument. Given param-
eters (a, b, c), for each deal (A, B,C) of that size that may be a different n. This
is for instance also the case for deals of size (4, 4, 2), (4, 4, 3), (5, 5, 2), (5, 5, 3),
(5, 5, 4), (6, 6, 2), (6, 6, 4), (6, 6, 5), (7, 7, 2), and (7, 7, 4). (As C holds more than
one card, none of these are state informative.) It can be even worse: for param-
eters (5, 5, 9) the sum announcement is still card safe (checked in Haskell), but
for a given deal (A, B,C) of that size, n may even vary for different cards x ∈ A.
This suggests that other methods of proof for showing card safety should also
be investigated.

Finally, back to swapping pairs of cards, we conjecture a strengthening of
Proposition 5 that may help us find good protocols consisting of more than
two announcements: In Z2n+1, any set of size n defines at least 2n− 3 different
sums of pairs. From this conjecture follows that (straightforward proof omitted):
Given is card deal size (a, b, 1). If a + b is even, b ≥ a and a > 5, then after
the announcement of

∑
A agent C does not know a single of A’s cards. For card

safety, we would also need that C does not know a single of B’s cards, but as a
may be different from b, this now requires a separate proof.

4 Communicating local states

The models encoding what agents know in a card deal can also be seen as an
interpreted system [5], namely where each processor/agent only knows his local
state (namely his hand of cards), and where there is public knowledge among all
agents of the set of possible global states of the system, where a global state is

9

10

an n-tuple of local states (given n agents). That a local state consists of several
cards is somewhat less relevant from this perspective. The concern of the agents
communicating to each other may simply be to keep their local state a secret,
but they may not care about each and every of their cards. That is, the protocols
should be state safe, but not necessarily card safe.

In works like [7] the basic building block for secrecy is not a card, or a state,
but a bit. A bit may be any proposition that the communicating agents wish to
share while keeping it a secret from intruders. Given a card deal of size (a, b, c),
‘A and B share a secret’ means that there is a proposition p such that it is pub-
lic knowledge (i.e., common knowledge to A, B, and C) that A and B commonly
know the value of p but that C remains ignorant of the value of p. A protocol can
be called bit safe and bit informative (or ‘a good protocol for bit exchange’) if for
each initial state of information a sequence of A, B announcements results in an
information state with a shared secret.6 We note that p typically is some factual
proposition p (such as ‘A holds card 0’, ‘the deal of cards is 012.345.6’, ...), but
it can be any proposition, also an epistemic statement; but this is not the situa-
tion typically considered in information theory, nor in security protocol analysis.
From this perspective, state informative is bit informative for the proposition
describing the deal of cards; and we note that this is a different proposition in
every different state. There are also less obvious correspondences:

Proposition 6. State safe is bit safe.

Proof. Assume a state safe protocol. Let L be a sequence of announcements
after which A and B know the card deal, but not C. Then C considers at least
two deals (A, B,C) and (A′, B′, C ′) possible. As C = C ′, A 6= A′. Let p be the
proposition ‘Agent A holds A’. Then A and B have common knowledge of p, but
C does not know if p. Therefore, the protocol is bit safe.

Now, assume a bit safe protocol, with L the sequence of announcements
realizing the shared bit p such that C does not know the value of p. (The next part
of the proof refers to modal logical semantics not explained in detail, and results
from [12].) From the last follows, directly from the semantics of the epistemic
modal operator, that C considers at least two different possible states in the
Kripke model encoding what agents know about each other in card deals. As
different states are about different card deals (see Section 2), C considers at least
two deals (A, B,C) and (A′, B′, C ′) possible. As C = C ′, A 6= A′. Therefore, the
protocol is state safe.

Similarly, one might wonder if bit informative is state informative. As said, state
informative is bit informative: the description of a state is a bit. But it is quite
possible to share a secret bit without disclosing all your cards. But, if it is possible
to share a secret bit, is there then also another protocol to safely disclose all of
your cards? We think the answer is yes, but we do not know the answer.
6 A logical analogue exists in group announcement logic [1] with common knowledge

where this corresponds to the property that there is a ϕ, not necessarily a propos-
tional variable, such that 〈AB〉((CABϕ∨CAB¬ϕ)∧¬KCϕ∧¬KC¬ϕ) is valid for initial
models of card deals.

10

11

We continue by showing for a large class of (a, b, c) that they are bit safe.

4.1 Bit exchange protocols

Lemma 2 (type >). If a, b > c, A and B can share a secret after public com-
munication.

Proof. The proof is by induction on c.
c = 0:

A and B already share a secret. Because C does not hold any cards, A knows
that B holds the cards A does not hold, and vice versa. The entire deal of cards
is common knowledge between A and B. E.g., let x be any card, then A and B
now share the secret of the value of ‘A holds x’.

c > 0:
Suppose that a ≤ b (or else, swap the roles of A and B). A chooses one of her
own cards, say x, and two of the remaining cards, say y, z. A announces: “I
hold exactly one of {x, y, z}.” (Given set notation, there is no order among the
three. Else, assume that A randomizes the order before the announcement.) B
has either two, one, or zero of these cards. We proceed by these cases.

– If B holds both y and z, B says: “I hold two of these cards.”
A and B now share the secret of (e.g.) the value of ‘A holds x’.

– If B holds one of y and z, say y, B says: “I hold one of these cards, namely y.
What is your card?” A responds by saying “My card is x.” It is now public
knowledge that C must have card z. Continue by repeating the procedure for
(a− 1, b− 1, c− 1). Note this case is also (type >). By induction hypothesis,
A and B can share a secret as a result.

– If B holds neither y nor z, B says: “I hold none of those. Which one was
yours?”; after which A responds by saying “My card is x.” It is now public
knowledge that A must have card x. Note this is only possible if c ≥ 2.
Continue by repeating the procedure for (a − 1, b, c − 2). Note this case is
also (type >). By induction hypothesis, A and B can share a secret as a
result.

Lemma 3 (type =). If a > b = c > 0 or b > a = c > 0, A and B can share a
secret after public communication.

Proof. Assume that a > b = c > 0 (or else, swap the roles of A and B). (Note
that, if c = b = 0, no secret can be exchanged, as it is then public knowledge
that A holds all cards.) Agent A chooses a card x from her own cards and a
card y from the remaining cards. Agent A now announces: “I hold exactly one
of {x, y}.” (Again, assume there is no order among the two, or else A should
randomize before the announcement.) If B holds y, B responds: “So do I.” A and
B now share a secret, e.g. that A holds x. Otherwise, B responds: “I hold neither
x nor y.” (It is now common knowledge to A and C that A holds x and that C
holds y.) There are now two cases. (It is not an induction.)

11

12

c = 1:
A continues by saying: “C holds y.” A and B now know the card deal.

c > 1:
A continues by saying: “I hold x and C holds y.” Proceed with case (a−1, b, c−1)
of (type >). (If a > b = c > 0, then a− 1, b > c− 1 > 0.) In Lemma 2 we proved
that A and B can then share a secret after public communication.

We combine Lemmas 2 and 3 in

Theorem 2. Let a, b > c, or a > b = c > 0, or b > a = c > 0. Then A and B
can share a secret after public communication.

Theorem 2 follows from [6, Theorem 2.1] (also cited in [7]) of which the special
case for two agents sharing a secret is that a + b ≥ c + 2. We note that this
involves cases where either a or b is smaller than c, unlike our conditions, so
their results are more general. Like ours, the bound in [6] employs a specific
construction. It is therefore unclear if that bound is sharp and if for all other
card deal size (a, b, c), no secret can be shared between A and B.

At least, also a negative result is found in [7]. The special case for three
agents of the matter treated in Section 6 of [7] shows that no bit exchange is
possible between two given agents for card deal size (1, 1, 1).

For ‘can be shared’ we should of course read ‘can be guaranteed to be shared’.
For any (a, b, c) with a, b ≥ 1, if B responds: “So do I.” to A’s announcement
“I hold exactly one of {x, y},” then A, B share a secret bit. This observation
leads to (we think) a somewhat strange result—strange because it cannot be
used to design safe protocols between two given agents A, B, and because this
observation seems not to have been made in [7], a paper that is otherwise pretty
comprehensive on such matters. (We write ‘seems’ because their terminology is
different from ours and hides many implicit consequences, such as the cited [6,
Theorem 2.1].) Note that for any (a, b, c): a, b, c ≥ 1 iff there is uncertainty about
the card deal.

Proposition 7. Given (a, b, c) where there is uncertainty about the card deal,
two agents can share a secret.

Proof. Take any agent i. Let i announce: “I hold exactly one of {x, y}. The
(single!) other agent j for which this also holds now responds: “So do I.” Now, i
and j share a secret bit. (Namely, the value of the proposition ‘i holds card x’.)

4.2 A protocol for (2, 2, 1) of length strictly larger than two

The bit exchange protocols above may consist of more than two announcements.
But it is not proved that no shorter protocol to exchange a secret exists in those
cases. For card safe protocols there are no known cases (a, b, c) for which only
protocols of three or more announcements exist. In this section we present a
state informative and state safe protocol of length 3.

Consider card deal size (2, 2, 1). Let the actual card deal be 01.23.4. Now
consider the sequence of announcements

12

13

Alice says: “I have one of 01 12 23 34 40,” after which Bob says: “Eve
has card 4 or card 1,” after which Alice says: “Eve has card 4.”

We show that this sequence is state safe and state informative. Initially, there
are

(
5
2

)
·
(
3
2

)
= 30 possible card deals. After Alice’s announcement there are 15

remaining deals. In their informational setting they are:

01.23.4 01.24.3 01.34.2
12.03.4 12.04.3 12.34.0
23.01.4 23.04.1 23.14.0

34.01.2 34.02.1 34.12.0
04.12.3 04.13.2 04.23.1

The lines stand for A-equivalence classes and the columns for C-equivalence
classes. There is no visual equivalent for B-classes in this two-dimensional rep-
resentation. All A-classes and all C-classes consist of three card deals, whereas
some B-classes have size 2 and other B-classes have size 1. For example, if the
actual deal is 01.23.4, Bob has not learnt Alice’s cards, as he cannot distinguish
that deal from 04.23.1. After Bob’s announcement, the remaining deals are

01.23.4
12.03.4

34.02.1
04.23.1

It is essential that Bob’s announcement is not merely ‘Eve has card 1 or 4’ but
‘I know that Eve has card 1 or 4.’ Therefore a deal like 23.01.4 is now eliminated
from consideration: although Eve has card 4 in that deal, Bob cannot distinguish
it from the other deal 34.01.2. Therefore, Bob considers it possible that ‘Eve has
card 1 or 4’ is false (namely when she holds 2), and therefore he does not know
that Eve has card 1 or 4.

Bob (of course) still doesn’t know Alice’s cards, Alice now knows the card
deal, and again Eve remains ignorant of Alice’s and Bob’s hands, although she
now has learnt that Alice hold card 1 and Bob holds card 3. After Alice’s final
announcement we retain

01.23.4
12.03.4

and we are done. For a change, let us give the protocol underlying this sequence
of three announcements:

Protocol
Alice: Let ij be my own cards. Let klm be the remaining cards. My
announcement is a random order of the hands ij jk kl lm mi. Bob: Let
ij be my own cards. If after Alice’s announcement I do not know the
card deal and (thus) consider it possible that Eve’s card is k or l, then I
announce that Eve’s card is k or l. If after Alice’s announcement I know

13

14

the card deal, and (thus) that Eve’s card is k, then I choose a card l
from Alice’s cards, and I announce (in random order) that Eve’s card is
k or l. Alice: I announce Eve’s card.

It should be noted that for other card deals Bob would already have learnt the
entire card deal from Alice’s first announcement, but that he should not disclose
that, because Eve would then learn the entire card deal, whatever her card was.
This is because the card deals remaining if Bob announces that in response to
Alice are

23.14.0 34.02.1 04.13.2 01.24.3 12.03.4

after which Eve always knows the card deal. So even when Bob knows the card
deal after Alice announcement, he ‘has to feign’ not knowing it, by continuing
to execute the protocol above.

We still have to show that there is no protocol of length two for parameters
(2, 2, 1). This is easy. First, observe that there is no way for Alice to inform
Bob of her cards in an announcement where all hands have empty intersection:
that would restrict the announcements to two hands only, e.g. 01 23. Therefore,
consider an announcement wherein two hands have a card in common. If Alice
were to have one of those hands (comprising three of the five cards), she considers
it possible that Bob holds the remaining two cards, and thus would not be able
to learn her hand of cards. Eve knows that too, and thus eliminates such hands
from her consideration. Then at most one hand will remain in the announcement,
so that Eve learns the card deal. For example, suppose Alice announces 01 23
04. Her hand cannot be 01 nor 04 for the reasons above. But then Eve concludes
she must hold 23! In any announcement consisting of more than three 2-hands,
all hands have non-empty intersection with at least one other hand.

Proposition 8. There are (a, b, c) for which good protocols satisfying state safety
always require more than two announcements.

Although an elementary result, it is a remarkable result: no other case is known
to us, and (despite a lot of effort) no such case is known to us for card safety.

5 Further research

We are still investigating generalizations of the sum announcement method, using
n-tuple swap instead of pair swap (such as the conjectured results in Section 3).
It is already clear that sum announcements are good protocols for far more
(a, b, c) than just (n, n, 1), and that this also goes beyond the results in [2].

We mentioned some specific open questions. Are there protocols of length
three or more and that cannot be reduced to protocols of shorter length, so that
A and B inform each other of their cards and C does not learn any card? Are there
protocols wherein A and B inform each other of their cards, and where making
this termination public keeps their secret safe? Are there card deals where you
can share a bit but not your hand of cards?

14

15

Of further logical interest is a language of protocols, and a logic to check
protocol properties. As known, in dynamic epistemic logics one can refer to
sequences of announcements, and thus to protocols as sets of sequences of an-
nouncements. This extensional view of protocols goes a long way, but a more
intensional modelling that sees a protocol as a function from agent’s local states
histories to announcements, would, we think, be progress. A promising logic
having such features is found in [14].

Acknowledgement

Hans van Ditmarsch is also affiliated to the University of Otago. We thank
Marco Vervoort for first proving an n + 1 lower bound version of Proposition 5.
We thank the LiS anonymous reviewers for their comments.

References

1. T. Ågotnes, P. Balbiani, H. van Ditmarsch, and P. Seban. Group announcement
logic. Journal of Applied Logic, 8:62–81, 2010.

2. M.H. Albert, R.E.L. Aldred, M.D. Atkinson, H. van Ditmarsch, and C.C. Han-
dley. Safe communication for card players by combinatorial designs for two-step
protocols. Australasian Journal of Combinatorics, 33:33–46, 2005.

3. J.A. Dias da Silva and Y.O. Hamidourne. Cyclic spaces for Grassmann derivatives
and additive theory. Bull. London Math. Soc., 26:140–146, 1994.

4. P. Erdös and H. Heilbronn. On the addition of residue classes modulo p. Acta
Arithmetica, 9:149–159, 1964.

5. R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi. Reasoning about Knowledge.
MIT Press, Cambridge MA, 1995.

6. M.J. Fischer and R.N. Wright. Multiparty secret key exchange using a random deal
of cards. In CRYPTO ’91: Proceedings of the 11th Annual International Cryptology
Conference on Advances in Cryptology, pages 141–155. Springer-Verlag, 1992.

7. M.J. Fischer and R.N. Wright. Bounds on secret key exchange using a random
deal of cards. Journal of Cryptology, 9(2):71–99, 1996.

8. A. Kerckhoffs. La cryptographie militaire. Journal des sciences militaires, IX:5–38
and 161–191, 1883.

9. T. Kirkman. On a problem in combinations. Camb. and Dublin Math. J., 2:191–
204, 1847.

10. K.S. Makarychev and Yu.S. Makarychev. The importance of being formal. Math-
ematical Intelligencer, 23(1):41–42, 2001.

11. D.R. Stinson. Combinatorial Designs – Constructions and Analysis. Springer,
2004.

12. H. van Ditmarsch. The russian cards problem. Studia Logica, 75:31–62, 2003.
13. J. van Eijck. DEMO — a demo of epistemic modelling. In J. van Benthem, D. Gab-

bay, and B. Löwe, editors, Interactive Logic — Proceedings of the 7th Augustus de
Morgan Workshop, pages 305–363. Amsterdam University Press, 2007. Texts in
Logic and Games 1.

14. Y. Wang, L. Kuppusamy, and J. van Eijck. Verifying epistemic protocols under
common knowledge. In TARK ’09: Proceedings of the 12th Conference on Theo-
retical Aspects of Rationality and Knowledge, pages 257–266, New York, NY, USA,
2009. ACM.

15

16

Appendix: Proof of Proposition 5 on page 8

Let us denote the elements of Z2n+1 by 0, 1, . . . , 2n. Throughout this proof we
shall sometimes numbers as elements of Z2n+1 or just as integers so that we can,
for example speak of an order. The context will always clarify which of the two
is meant.

We shall consider any subset A of {0, 1, . . . , 2n} of size n. We are interested
in the amount of different sums of pairs of two different numbers from A that we
can form. This amount is invariant under shifting the whole set A along some
distance. That is, |S2(w + A)| = |S2(A)|: we are interested in the number of
different sums and if x+y 6= u+v then x+y +2w 6= u+v +2w, whence shifting
all points along a distance w does not affect the number of different sums of
pairs. Thus, we may always assume that 0 ∈ A.

We call two points x, y ∈ A consecutive when either x < y and for no z ∈ A
we have x < z < y or when x is the largest point in A and y is the smallest
point in A. Let us look at the minimal distance between two consecutive points
in A and call this dist .

What can the value of dist be? Clearly it can be 1 but it cannot be larger
than 2. For, if we fix the first point, say, at 0, then there are 2n points left
to allocate the remaining n − 1 points. But 3(n − 1) > 2n for n > 3 thus the
remaining points cannot be all at distance 3 from each other. It is easy to see
that dist = 2 is possible. Thus our proof has two cases.

dist = 2
What about distance 2? The first point after 0 would be at 2 and the last point
at 2n + 1 − 3. Hence we see that necessarily we fill the remaining space with
one distance of 3 and the remaining distances of 2. Without loss of generality
we may assume that our first point is at 0 and the second point is at 3 and the
n−2 remaining points all are of the form 2m+3. It is now clear that the element
0 defines n − 1 sums, namely 3, 5, . . . Moreover, it is clear that the element 3
together with each of the n− 2 elements of the form 3 + 2m defines a new sum.
Thus, we count (n − 1) + (n − 2) = 2n − 3 which is certainly at least n + 3 for
n ≥ 6.

dist = 1
This case is rather more involved and needs some case distinctions. We define a
gap to be a pair (x, y) of consecutive elements (mod 2n+1) such that y−x 6= 1.
For example, if n = 3 and we consider the set {2, 3, 5}, then (2, 3) are considered
consecutive and not a gap, while (5, 2) are considered also consecutive (given
that we are looking at these as elements of the cyclic group Z7) but are a gap,
since 2− 5 ≡ 4 (mod 7).

An interval is a set of consecutive elements (without gaps), for example
{2, 3, 4} but not {2, 4}. Let E ⊆ Z2n+1. By SE we mean the set of sums of
pairs of elements in E. Clearly E \ {0} is always a subset of SE, since 0 is an
element of E; we will use this fact throughout the following. We consider five
cases, according to the number of gaps.

16

17

1. If we have only one gap, that means we have an interval {0, 1, ..., n} and this
gives us 2n− 3 sums of pairs. Of course we cannot have zero gaps.

2. If we have two gaps, then E consists of two intervals, one of which has at
least five elements (we are using the assumption that n ≥ 9). We can then
assume without loss of generality that {0, ..., 4} ⊆ E. Now, if we add the
differences between consecutive elements this must be 2n + 1; since we have
only two gaps of width (say) g1, g2 this becomes n − 2 + g1 + g2. Here the
n− 2 comes from the pairs of consecutive elements which do not form gaps.
So we must have

(n− 2) + g1 + g2 = 2n + 1

which becomes

g1 + g2 = n + 3,

and thus one of the two must be at least
⌊

n+3
2

⌋
, which because n ≥ 9 is at

least 6. Then, let (x1, y1) and (x2, y2) be the two gaps, with y1 − x1 ≥ 6.
E \ {0} ⊆ SE gives us n− 1 elements. Further, x1 + i ∈ SE with i = 1, 2, 3
and x2 + 1 ∈ SE, adding up to (n− 1) + 3 + 1 = n + 3 elements.

3. If we have three gaps, S consists of three intervals, and at least one has
three elements. Further, one gap has width at least 3, because if no gaps had
width 3 we would have that the sums of differences of consecutive elements
is (n− 3) + 6 = n + 3, which is smaller than 2n + 1 provided that n > 2. We
now consider two subcases:

(a) E contains an interval with four elements. Then, we can assume without
loss of generality that {0, 1, 2, 3} ⊆ E. Now, if (x, y) is a gap of width
at least 3, x + 1, x + 2 ∈ SE, while the other two gaps contribute at
least one element each, plus E \ {0} ⊆ SE giving us a total of at least
2 + 2 + (n− 1) = n + 3 elements.

(b) E contains no interval with four elements. Then, E contains more than
two intervals with three elements. This can be shown as follows. Let (x, y)
be a gap of width at least 3. There exist three consecutive elements
z, z + 1, z + 2 such that z + 2 6= x (since we have at least two such
intervals we can pick one or the other accordingly), and thus we can
assume without loss of generality that {0, 1, 2} ⊆ S and there is a gap
(x, y) of width ≥ 3 such that x 6= 2. But then once again x+1, x+2 ∈ SE,
and the same computation as above gives us the desired bound.

4. If we have four gaps, S consists of four intervals, and at least one of them
must have three elements. Thus we can assume {0, 1, 2} ⊆ E. As always
E \ {0} ⊆ SE, and if (x, y) is a gap, then x + 1 ∈ E giving us an extra four
elements, for a total of (n− 1) + 4 = n + 3.

5. If there are at least five gaps, then assume without loss of generality that
{0, 1} ⊆ E. In that case, at least four of the gaps are of the form (x, y) with
x not equal to 1, and hence we have that x + 1 is an element of SE, giving
us four new elements for a total of (n− 1) + 4 = n + 3.

17

18

import Data.List
-- (subsets n xs) outputs the list of all the subsets of xs of n elements.
subsets :: Int -> [Int] -> [[Int]]
subsets 0 _ = [[]]
subsets _ [] = []
subsets (n+1) (x:xs) = [x:ys | ys <- subsets n xs] ++ subsets (n+1) xs
-- (subsetSum m n xs) outputs the list of all the sums (modulo m) of the subsets of xs of n elements.
subsetSum :: Int -> Int-> [Int] -> [Int]
subsetSum m n xs = nub [mod (sum ys) m | ys <- subsets n xs]
-- (deals a b c) generates all the deals in an (a,b,c) card distribution.
deals a b c = [[xs,ys,zs] | xs <- subsets a [0..(a+b+c-1)],

ys <- subsets b ([0..(a+b+c-1)] \\ xs),
zs <- [([0..(a+b+c-1)] \\ xs) \\ ys]]

-- (check m n as bs) checks whether each card of as can be interchanged in an n-tuple with an
-- n-tuple of elements of bs with the same sum (modulo m).
check m n as bs = and [or [elem (mod (x+y) m) ys | y <- subsetSum m (n-1) (as \\ [x])]| x <- as]

where ys = subsetSum m n bs
-- (secure a b c n) checks whether for each deal of an (a,b,c) card distribution, [as,bs,cs],
-- each card of as can be interchanged in an n-tuple with an n-tuple of elements of bs with
-- the same sum (modulo a+b+c).
secure a b c n = and [check (a+b+c) n as bs | [as,bs,_] <- deals a b c]
-- (secure2 a b c) checks whether for each deal of an (a,b,c) card distribution, [as,bs,cs],
-- there exists some n <= min(a,b) such that each card of as can be interchanged in an n-tuple
-- with an n-tuple of elements of bs with the same sum (modulo a+b+c)"
secure2 a b c = and [or [check (a+b+c) n as bs | n <- [2..min a b]]| [as,bs,_] <- deals a b c]

Fig. 1. The Haskell script subsets.hs

Appendix: Haskell script used in Lemma 1 on page 8

Figure 1 shows the Haskell script subsets.hs. The implemented algorithm is
the natural brute force one. In the general setting of an (a, b, c) card distribution,
we firstly define a function

deals :: Int -> Int -> Int -> [[Int]]

so that deals a b c generates all the
(
a+b+c

a

)
·
(
b+c

b

)
possible card deals in an

(a, b, c) card distribution. Observe that for parameters (8, 8, 1) this amounts to
generating 218790 card deals. Next, we define an auxiliary predicate

check :: Int -> Int -> [Int] -> [Int] -> Bool

so that check d k as bs checks whether each card of A’s hand as can be in-
terchanged in an k–tuple with a k–tuple of elements of B’s hand bs with the
same sum (modulo d). Finally, combining deals and check we define the main
generate and test predicate

secure :: Int -> Int -> Int -> Int -> Bool

so that secure a b c k checks whether for each card deal of an (a, b, c) card
distribution each card of A’s hand can be interchanged in a k–tuple with a k–
tuple of elements of B’s hand with the same sum (modulo a + b + c). (For card
safety we also have to check secure b a c k, namely that each card of B’s hand
can be interchanged in a k–tuple with a k–tuple of elements of A’s hand with
the same sum – but when a = b this holds by symmetry, as in the case (n, n, 1)
below.)

18

19

Therefore, the following Haskell evaluation gives us the proof that the an-
nouncement of the sum of A’s cards is also secure for 4 ≤ n ≤ 8 (as well as
the additional information that this fact can be established by a swapping pairs
argument):

Main> and [secure n n 1 2 | n <- [4..8]] True

In view of the remarks in Section 3 on generalizing pair swap to swap of
n-tuples, it is natural to add to our Haskell script a nonuniform version of the
predicate secure

secure2 :: Int -> Int -> Int -> Bool

so that secure2 a b c checks whether for each card deal of an (a, b, c) card
distribution there is some k ≤ min(a, b) such that each card of A’s hand can be
interchanged in a k–tuple with a k–tuple of elements of B’s hand.

19

A preference logic-based approach for Alert correlation

Salem Benferhat and Karima Sedki

CRIL CNRS UMR 8188, Université d’Artois,
Rue Jean Souvraz SP 18 62307 Lens

Cedex, France,
{benferhat,sedki}@cril.univ-artois.fr

http://www.cril.univ-artois.fr

Abstract. Alert correlation consists in reducing the large amount of alerts that intrusion
detection systems (IDS) produce. In this paper, we present a new alert correlation approach
based on knowledge and preferences of security operators. Our logic-based approach allows to
rank-order produced alerts on the basis of a security operator knowledge about the system,
used IDS and his preferences about alerts that he wants to analyze or to ignore. It is based on
the development of a new non-classical logic for representing preferences, called FO-MQCL
(First Order - Minimal Qualitative Choice Logic). Our logic extends a fragment of the first
order logic by adding a new logical connective. The general idea is to present only alerts that
fully fit security operator’s preferences and knowledge. And if needed, less preferred alerts
can also be presented. Experimental results shows how our approach is useful for reducing
the set of reported alerts.

Key words: Preferences logic, Alert correlation, Security Operator’s Knowledge and Pref-
erences

1 Introduction

Intrusion Detection Systems (IDS) are important tools to detect abnormal and malicious ac-
tivities that attempt to compromise the integrity, confidentiality and availability of resources
on the system [1, 16]. Currently, there are two main intrusion detection approaches. Misuse
detection [18] based on signatures of known attacks. These approaches achieve very high de-
tection rates on known attacks. However, they are not capable to detect new attacks that do
not follow predefined patterns. Anomaly approach [5] is based on a definition of the normal
activity profile. Any activity or behavior that deviates from the normal profile is considered as
anomaly or possible intrusion. These approaches have the advantage to detect unknown and
new attacks. However, they generate a large amount of alerts due to deviations or changes
of authorized user’s behaviors or actions. Both of these approaches are important to protect
the system. However, they present several problems. The main problem concerns the large
amount of alerts that IDS produce. The security operator who analyzes and takes appropriate
decisions is often overwhelmed. Several alert correlation approaches have been proposed in
recent years to address this problem.
Alert correlation tools [7, 10, 14, 20, 22, 15, 13, 19, 23] are important for reducing the large vol-
ume of alerts that are generated by IDS. Three kinds of alert correlation techniques can be
distinguished.

• Alerts correlation based on similarity between attributes: These techniques exploit sim-
ilarities between alerts attributes. In [22], a probabilistic method that considers feature

20

2 Salem Benferhat and Karima Sedki

overlap, feature similarity, minimum similarity, and expectation of similarity was used
to group or correlate alerts based on the similarities between some selected attributes,
such as source and destination IP addresses of the victim and attacker. In [20], a similar
approach that is based on the port-scan detector tool Spice (Stealthy Probing and Intru-
sion Correlation Engine), was used to detect stealthy port-scans. Other techniques that
belong to the same category are proposed in [10, 6].

• Alert correlation based on known attacks scenarios: This class of approaches [21, 12] is
based on known attacks scenarios (i.e., steps that attackers use in their attacks). Exam-
ples of attack languages to specify attack scenarios can be found in [11, 8]. This family
of correlation approaches give satisfactory results for well-defined and known attacks se-
quences, but they cannot discover novel attack scenarios.

• Alert correlation based on prerequisites and consequences relationship [7, 14]: The main
idea for these approaches is that earlier stages of attacks are often used in a preparation
for later ones. The prerequisites of attack is the necessary conditions for the attack to be
successful, while the consequences of an attack are the possible outcomes of an attack.
Such approaches have the potential of discovering unknown attack pattern.

Existing alert correlation techniques are definitely useful to reduce initial set of reported
alerts. However, the number of remaining alerts to be manually handled by the security op-
erator is still high. Clearly, a security operator uses his knowledge about system, reliability
of IDS and also his preferences (for instance, on the basis on how risky is an action) to se-
lect a subset of alerts to be first analyzed. The aim of this paper is to first develop a logic
that represents security operator’s knowledge and preferences. Then, we develop an inference
mechanism that allows to select a subset of alerts to be first presented to the security opera-
tors.

We propose a logic is called First Order - Minimal Qualitative Choice Logic (FO-MQCL)
and it is an extension of a fragment of first order logic. It is also an extension of a basic part
of QCL (Qualitative Choice Logic) logic [4]. QCL adds to classical propositional logic a new
connective, called ordered disjunction, used to express preferences between alternatives. One
of the important limitation of QCL is that it does not correctly deal with negated and con-
ditional preferences of the form (If A is preferred to B then C is preferred to D). Conditional
rules that involve preferences are expressed using propositional implication.

The rest of this paper is organized as follows: Section 2 provides formal definition of our
new logic. Section 3 presents our alert correlation approach and Section 4 presents some
experimental results. Section 5 concludes the paper.

2 FO-MQCL: A new Logic for Handling Preferences

This section presents our new logic to be used to represent knowledge and preferences of
a security operator. The starting point is an existing logic called Qualitative Choice Logic
(QCL) [4]. The non-standard part of QCL logic is a new logical connective ×, called or-
dered disjunction, which is fully embedded in the logical language. Intuitively, if A and B
are propositional formulas then A × B means: if possible A, but if A is impossible then at
least B. Existing logics for representing preferences are not fully satisfactory because most of
theses logics, particularly those that are based on the propositional language, cannot express
generic knowledge that involve variables and conditional rules of the form ”if A is preferred

21

A preference logic-based approach for Alert correlation 3

to B then C is preferred to D”. For example, QCL logic inference relation is not satisfac-
tory when one deals with complex preferences [4]. This is due to the way rules are handled,
and where ordered disjunction is lost when preferences are associated with negation. Indeed,
preferences of the form (A × B)⇒ C is equivalent to (¬ A ∨ ¬B)⇒ C where ordered dis-
junction is replaced by standard disjunction (see [2, 17] for more details). On the other hand
propositional logic is not appropriate to express complex knowledge. It can only deal with
pieces of information regarding particular situations or properties, and cannot express generic
knowledge that involve variables. The extensions of QCL proposed in [2] are not satisfactory
for our application, in particular they are defined within propositional language. What is
needed is a richer language, based on a fragment of first order logic, to express general pieces
of information. Our new logic is called FO-MQCL, and will be formally described in next
section.

2.1 FO-MQCL language

The language of FO-MQCL logic is a fragment of first order logic. It is composed of three
types of formulas: i) universally quantified first order formulas which will be used to express
knowledge of a security operator, ii) universally quantified basic choice formulas which will
be used to express simple preferences of a security operator and iii) universally quantified
general choice formulas which will be used to express complex and general preferences. The
FO-MQCL language is given by the following five definitions:

Definition 1 (Terms). Let X = {x, y, z, ...} be a set of variables. Let C = {c1, c2,...,cn}
be a set of constants. We define a term as either a constant of C or a variable of X.

This is a restricted definition of the notion of terms used in first order logic since no function
symbol is used in this paper.

Definition 2. Let us denote by PS a set of predicate symbols. The language of unquantified
formulas, denoted PROPPS is defined as follows:
1. If p ∈ PS is a predicate symbol of arity n, and t1, t2,...,tn are terms, then p(t1, t2,...,tn)

is an unquantified first order logic formula (i.e. p ∈ PROPPS).
2. If p ∈ PROPPS, q ∈ PROPPS, then p ∧ q, p ∨ q, ¬p are unquantified first order logic

formulas.
3. Unquantified first order logic formulas are only obtained by applying items (1) and (2) a

finite number of times.

Clearly, PROPPS language is close to propositional language and does not use all the expres-
sive power of the first order logic. However, it is sufficient for our application. In fact, this
language will be used to express a security operator’s preferences. However, from reasoning
point of view and for implementation purposes, it is better to work on propositional level
in order to exploit existing inference tools such as SAT-Solvers (SAT for satisfiability tests)
which are publicly available. Namely, it is important to instantiate first order knowledge’s
bases to propositional ones. Let us now define the concept of a basic choice formulas and a
general choice formulas to represent simple and complex preferences respectively. Given a set
of unquantified first order formulas a1, a2, ..., an, the formula a1×a2× . . .×an is used to
express and order a list of alternatives: some ai must be true, preferably a1, but if this is not
possible then a2, if this is not possible a3, etc.

22

4 Salem Benferhat and Karima Sedki

Definition 3 (Basic Choice Formulas). Basic Choice Formulas (BCF) are ordered dis-
junctions of unquantified first order formulas. They offer a simple way to order available
alternatives. The language composed of BCF formulas is denoted by BCFPS and is the
smallest set of sentences defined as follow:
1. If φ ∈ PROPPS then φ ∈ BCFPS

2. If φ, ψ ∈ BCFPS then (φ×ψ) ∈ BCFPS

3. Every basic choice formula is only obtained by applying the two rules above a finite number
of times.

Definition 4 (General Choice Formulas). General Choice Formulas (GCF) represent
any formula that can be obtained from PS using connectors ×, ∧, ∨, ¬. The language com-
posed of GCF formulas, denoted GCFPS, is defined as follows:
1. If φ ∈ BCFPS then φ ∈ GCFPS

2. If φ, ψ ∈ GCFPS then (φ ∧ ψ),¬(ψ), (φ ∨ ψ), (φ×ψ) ∈ GCFPS.
3. The language of GCFPS is only obtained by applying the two rules above a finite number

of times.

Definition 5 (FO-MQCL formulas). The set of universally quantified formulas is defined
as follows:

– If φ ∈ PROPPS is an unquantified first order formula , and {x1, x2,..., xn} are the set of
variables used in φ, then (∀ x1,..., ∀ xn φ) is a universally quantified first order formula
(i.e. FO-PROP formula). The language of universally quantified first order formulas is
symbolized by FO-PROPPS.

– If φ ∈ BCFPS is a basic choice formula, and {x1, x2,..., xn} are the set of variables used
in φ, then (∀ x1,..., ∀ xn φ) is a universally quantified basic choice formula (i.e. FO-
BCF formula). The language of universally quantified basic choice formulas is symbolized
by FO-BCFPS.

– If φ ∈ GCFPS is a general choice formula, and {x1, x2,..., xn} are the set of variables
used in φ, then (∀ x1,...,∀ xn φ) is a universally quantified general choice formula (i.e.
FO-GCF formula). The language of universally quantified general choice formulas is
symbolized by FO-GCFPS.

Example 1. Assume that a security operator prefers to analyze alerts that are issued by Bro
IDS to those that are issued by Snort IDS. We use the FO-MQCL language to define this
preference, which is written using the following universally quantified basic choice formula:

φ = ∀x, ∀y (Show-To-Security-Operator-Alert(x) ∧ IDS-Bro(x)) ×
(Show-To-Security-Operator-Alert(y) ∧ IDS-Snort(y)).

This formula means that “a situation where an analysis (by a security operator) of an alert
issued by Bro IDS is preferred to a situation where an analysis of an alert issued by Snort”.
Show-To-Security-Operator-Alert(x) is the predicate which means that x will show (to be
analyzed) to the security operator.
Assume that we have a general rule saying that if a security operator prefers to analyze
suspected inbound alerts to suspected outbound ones then he wants to analyze Web alerts.
This preference is encoded by the following universally quantified general choice formula:

∀x, ∀y, ∀z, (Suspected-Inbound-Alerts(x) × Suspected-Outbound-Alerts(y)) ⇒
Show-To-Security-Operator-Web-Alerts(z).

If a security operator wants to analyze all suspected inbound alerts, the FO-MQCL language
allows to encode this knowledge by using the following universally quantified first order for-
mula (which does not involve ordered disjunction ×):

ψ = ∀x Show-To-Security-Operator-Suspected-Inbound-Alerts(x).

In the above formulas: x, y, z denotes variables where their values are the identification of
alerts.

23

A preference logic-based approach for Alert correlation 5

2.2 Inference relation of FO-MQCL formulas

The semantics of FO-MQCL formulas (FO-PROP , FO-BCF or FO-GCF) is based on the
degree of satisfaction of a formula in a particular model I. As in standard propositional logic,
an interpretation I is an assignment of the classical truth values T(True), F(False) to the
atoms in PS. I will be represented by the set of its satisfied atoms.
The symbol |= represents the propositional inference relation. I |= φ means that the inter-
pretation I satisfies a formula φ (in this case, the satisfaction degree of the formula is always
equal to 1). So, we can also write |=1.
I 6|= φ means that the interpretation I does not satisfy a formula φ.
The symbol |=k represents the non classical inference. For example, I |=k ψ means that the
interpretation I satisfies a formula ψ to degree k (k ≥ 1).

Inference relation of universally quantified basic choice formulas The inference
relation of FO-BCF formulas is given in the following definition:

Definition 6. 1. Let φ = ∀ x1, ∀x2,..., ∀ xn
a1(x1)×a2(x2)× . . .×an(xn).
Let Inst(φ) = a1(c1)×a2(c2)× . . .×an(cn) be an instance of φ where c1 ..., cn are con-
stants. Then I |=k a1(c1)×a2(c2)×...×an(cn) if and only if I |= a1(c1) ∨ a2(c2) ∨ ... ∨
an(cn), and k = min(j |I |= aj(cj)).

2. Let φ ∈ FO-PROPPS, and Inst(φ) be an instance of φ. I |=1 Inst(φ) if and only if I |=
Inst(φ).

Namely, given a basic choice formula
a1(c1)×a2(c2)× . . .×an(cn), an interpretation or a solution I satisfies φ to a degree k, if
it satisfies the kth option of φ (namely ak(ck)) and falsifies the first (k-1) options of φ.
Interpretation I is said to be preferred to an interpretation I ′, with respect to a given formula
φ, if the degree of satisfaction of φ by I is less than the degree of satisfaction of φ by I ′.
Note that contrary to the inference relation of FO-BCF formulas where the satisfaction
degree can be greater than 1, the satisfaction degree of satisfied FO-PROP formulas is equal
to 1.

Example 2. Assume that we have two alerts A1 and A2. Let φ = Alert-Snort(A1) × Alerts-
Bro(A2). The satisfaction degree of each interpretation with respect to this preference is
given in the following table.

Interpretation Alert-Snort(A1) Alerts-Bro(A2) φ

I1 F F ∞
I2 F T 2

I3 T F 1

I4 T T 1

Hence, from this table, the interpretations where Alert-Snort(A1) is true is preferred to in-
terpretations where Alert-Bro(A2) is true. Indeed, the satisfaction degree of Alert-Snort(A1)
is 1 in its models I3 and I4, while it is greater than 1 in I1 and I2.

24

6 Salem Benferhat and Karima Sedki

Inference from universally quantified general choice formulas This section
proposes our inference relation for universally quantified general choice formulas which simply
reuses Definition 6 after a normalization step that transforms a FO-GCF formula into a FO-
BCF formula. The starting point is that a general choice formula is a combination of basic
choice formulas using usual connectors ∨, ∧, ¬ and the new connector ×. We argue that these
connectors can be distributed, and hence any complex choice formulas can be equivalently
transformed into basic choice formulas. The idea is then to provide an equivalent FO-BCF
formula for each FO-GCF formula.
The following introduces the notion of normal form function, which associates with each FO-
GCF formulas (complex form of preferences), its corresponding FO-BCF formulas (simple
form of preferences). This normal form function is denoted by NFO−MQCL.

Definition 7. We define a normal function denoted by NFO−MQCL, a function from FO-
GCFPS to FO-BCFPS, such that:
1) Case of universally quantified basic choice formulas

• Normal form of universally quantified basic choice formulas are these formulas them-
selves:
∀ φ ∈ FO-BCFPS ,NFO−MQCL(φ) = φ.

2) Case of combination of universally quantified basic choice formulas

• Normal form of negated, conjunction and disjunction of FO-BCF formulas are:
Let φ = a1× . . .×an, and ψ = b1× . . .×bm such that ai ∈ FO-PROPPS, bi ∈
FO-PROPPS,

(a) NFO−MQCL((a1× . . .×an) ∧ (b1× . . .×bm)) ≡ c1× . . .×ck, where k = max(m,
n), and

ci =

[(a1 ∨ ... ∨ ai) ∧ bi] ∨ [ai ∧ (b1 ∨ ... ∨ bi)]

if i ≤ min(m,n)
((a1 ∨ . . . ∨ an) ∧ bi) if n < i ≤ m
(ai ∧ (b1 ∨ . . . ∨ bm)) if m < i ≤ n

(b) NFO−MQCL(φ ∨ ψ) ≡ c1×c2× . . .×ck, where k = max(m, n), and

ci =

(ai ∨ bi) if i ≤ min(m,n)
ai if m ≤ i ≤ n
bi if n ≤ i ≤ m

(c) NFO−MQCL¬(a1× a2× . . .× an) ≡ ¬ a1×¬a2× . . .×¬an.

The conjunctive and disjunctive operators have the same definitions as the one proposed
in original QCL logic [4], but the negation fully departs from the one given in [4].

3) Case of combination of universally quantified general choice formulas
- The normal form with respect to negated formulas:

(a) ∀ φ ∈ FO-GCFPS and φ 6∈ FO-BCFPS,
NFO−MQCL(¬φ) ≡ NFO−MQCL(¬NFO−MQCL(φ)).

- The normal form is decomposable with respect to conjunction, disjunction and ordered
disjunction of FO-GCF formulas:

25

A preference logic-based approach for Alert correlation 7

(b) ∀ φ, ψ ∈ FO-GCFPS and (φ 6∈ FO-BCFPS or ψ 6∈ FO-BCFPS),
NFO−MQCL(φ ∧ ψ) ≡ NFO−MQCL(NFO−MQCL(φ) ∧NFO−MQCL(ψ)).

(c) ∀ φ, ψ ∈ FO-GCFPS and (φ 6∈ FO-BCFPS or ψ 6∈FO-BCFPS),
NFO−MQCL(φ ∨ ψ) ≡ NFO−MQCL(NFO−MQCL(φ) ∨NFO−MQCL(ψ)).

(d) ∀ φ, ψ ∈FO-GCFPS and (φ 6∈FO-BCFPS or ψ 6∈ FO-BCFPS),
NFO−MQCL(φ×ψ) ≡ NFO−MQCL(NFO−MQCL(φ)×NFO−MQCL(ψ)).

Property 1 (Case of universally quantified basic choice formulas) says that the normal form
of a basic choice formula φ, is the formula φ. Property 2 ((a), (b), (c)) gives the definition of
conjunction, disjunction and negation applied to basic choice formulas. Property 2-(a) con-
firms the meaning of conjunction of preferences. Indeed, assume a1×a2× . . .×an denotes a
preference of a user A, and b1×b2× . . .×bm denotes a preference of B. Applying, conjunc-
tion of preferences allows to select solutions that privilege A and B. For instance, a1b1 (which
represents the best choice for A and the best choice for B) is preferred to (a2b2) (which
represents the best second choice for A and the second choice for B).
Property 3 ((a), (b), (c), (d)) expresses that the normal form function applied to general
choice formulas is decomposable with respect to negation, conjunction, disjunction and or-
dered disjunction.

The above definition in fact provide a recursive way to normalize a general choice formulas.
The stopping criteria is when the formula itself is a simple (basic) choice formula (case 1). If
ψ is a combination of two simple choice formulas, then case 2 of Definition 7 provides a direct
way to get a simple choice formula. If ψ is in fact a combination of two general choice formu-
las, then first normalize recursively each formula (case 3) and then apply case 2 of Definition 7.

Example 3. Let the following general choice formula ψ be such that: ψ = ((a1× a2) ∨(a3×
a4))∧ (b1× b2).
To give the satisfaction degree of the formula ψ for each interpretation, we first normalize ψ
(i.e. we transform ψ into equivalent basic choice formula) as indicated in Definition 7. After
the normalization step, we use Definition 6 to compute the satisfaction degree of obtained
basic choice formula.

1. Normalization of ψ:
ψ is a combination (conjunction) of two formulas, the first formula ((a1× a2) ∨(a3× a4))
is a general choice formula and the second one (b1× b2) is a basic choice formula.
Using item 3-(b) of Definition 7, we have
NFO−MQCL(((a1× a2) ∨ (a3× a4)) ∧ (b1 × b2))
≡ NFO−MQCL (NFO−MQCL((a1× a2) ∨ (a3× a4)) ∧ NFO−MQCL(b1 × b2)).

We first use item 2-(b) of Definition 7 to normalize (a1× a2) ∨(a3× a4).
So, NFO−MQCL((a1× a2) ∨ (a3× a4)) ≡ (a1 ∨ a3)× (a2 ∨ a4).
Then, we use item 1 of Definition 7 to normalize (b1× b2) which is already a basic choice
formula. Namely,
NFO−MQCL((b1× b2))≡ b1 × b2.

Thus, NFO−MQCL(((a1× a2)∨(a3×a4))∧(b1×b2))
≡ NFO−MQCL (NFO−MQCL((a1× a2) ∨ (a3× a4))∧ NFO−MQCL(b1 × b2)).
≡ NFO−MQCL(((a1 ∨ a3)× (a2 ∨ a4)) ∧ (b1 × b2))

26

8 Salem Benferhat and Karima Sedki

At this step, we have to normalize a conjunction of two basic choice formulas, so, we use
item 2-(a) of Definition 7. The final result is:
NFO−MQCL(ψ) ≡ ((a1 ∨ a3)∧ b1)× (((a1 ∨ a2 ∨a3 ∨ a4)∧ b2)∨((a2∨a4)∧ b1)).

2. Computing satisfaction degree of ψ:
- Let I1 ={a2, b2}. Applying item 2 of Definition 6, we have:
I1 6|= (a1 ∨ a3)∧ b1, and I1 |= ((a1 ∨ a2 ∨a3 ∨ a4)∧ b2)∨((a2∨a4)∧ b1).
Using item 1 of Definition 6, we have: I1 |=2 NMQCL(ψ). So, I1 satisfies ψ to degree 2.

- If I2 ={b2}, then I2 6|=NMQCL(ψ). I2 does not satisfy ψ.

- If I3 ={a1, b1}, then I3|= (a1 ∨ a3)∧ b1 and I3 6|= ((a1 ∨ a2 ∨a3 ∨ a4)∧ b2)∨((a2∨a4)∧
b1). Using item 1 of Definition 6, we have I3 |=1NMQCL(ψ). I3 satisfies ψ to degree
1.
This means that ψ is totally satisfied by I3.

The above definitions (Definition 6 and Definition 7) provide a satisfactory degree of one basic
choice formula or general choice formula with respect to a given interpretation. This allow to
rank-order different interpretations and define the notion of preferred models when we have
a set of pieces of knowledge and a set of preferences. Let K be a set of universally quantified
first order formulas which represents knowledge or integrity constraints, and let T be a set
of preferences that contains only simple form preferences (universally quantified basic choice
formulas). We suppose that all complex form preferences (general choice formulas) are first
transformed into simple form preferences using Definition 7.

Definition 8. Let Mk(T) denote the subset of universally quantified basic choice formulas
of T satisfied by a model M to a degree k (using Definition 6). A model M1 is { K ∪ T}-
preferred over a model M2 if

∑n
k=1| M

k
1 (T)| >

∑n
k=1 | M

k
2 (T)|, where n is the maximum

number of satisfaction degrees that can be associated with a formula (| Mk
1 (T)| indicates the

number of formulas in T that are satisfied to degree k by a model M1). M is a preferred model
of { K ∪ T} if and only if:
1. M is model of K,
2. M is maximally {K ∪ T}-preferred.

Again Definition 8 differs from the lexicographic ordering given in [4]. Our definition allows
compensations between satisfactions degrees.

It is important to be precise, that there is no priorities between the different formulas and the
inference relation of any formula is given independently of other formulas, but the preferred
models are computed from the inference relation of each formula. This means that if a given
interpretation does not satisfy one formula, it can not be a preferred model. For example, if the
security operator gives two preferences: inbound alerts are preferred to outbound ones, and
TCP alerts are preferred to UDP alerts, then these two preferences have the same priorities.

Example 4. Assume that K contains one formula

φ1 = ∀x ¬ Show-To-Security-Operator-Ping-alerts(x),

and T contains one preference represented by the formula φ2 as follows:

φ2 = ∀x,∀y,∀z Show-To-Security-Operator-Web-alerts(x)∨(Show-To-Security-Operator-
Scan-alerts(y)×Show-To-Security-Operator-Ping-alerts(z)).

27

A preference logic-based approach for Alert correlation 9

φ1 is a universally first order quantified formula that allows to encode the knowledge of a
security operator who considers that alerts Ping have not to be presented for analysis. φ2 is
a universally quantified general choice formula that indicates that either a security operator
wants to analyze alerts Web, or he prefers analyzing Scan alerts to Ping ones.
We first compute the satisfaction degree (inference relation) of formulas φ1 and φ2. The
satisfaction degree of the formula φ1 is given directly using item 2 of Definition 6. Concerning
the inference relation of the formula φ2, we first use Definition 7 to normalize it (for short we
use Show instead of Show-To-Security-Operator in table 1).

Show-Web-alerts(A′1) Show-Scan-alerts(A′2) Show-Ping-alerts(A′3) (1) (2)

True True True ∞ 1

True True False 1 1

True False True ∞ 1

True False False 1 1

False True True ∞ 1

False True False 1 1

False False True ∞ 2

False False False 1 ∞

Table 1. Satisfaction degree of formulas of K ∪ T

• Normalization of the formula φ2:
Let φ′2= NFO−MQCL(φ2), using item 2-(b) of Definition 7, we have:

φ′2=NFO−MQCL(∀x,∀y,∀z Show-To-Security-Operator-Web-alerts(x)
∨(Show-To-Security-Operator-Scan-alerts(y)×Show-To-Security-Operator-Ping-alerts(z)))
≡ ∀x,∀y,∀z (Show-To-Security-Operator-Web-alerts(x)∨ Show-To-Security-Operator-
Scan-alerts(y))×Show-To-Security-Operator-Ping-alerts(z).

After normalization of the formula φ2, K ∪T contains a universally quantified first order
formula φ1 and a universally quantified basic choice formula φ′2.

• Instances of formulas φ1 and φ2: in this example, we suppose that we have three
different alerts: (A′1, A′2 and A′3) such that A′1 is a Web alert, A′2 is a Scan and A′3 is a
Ping, then Inst(K) and Inst(T) which are respectively instances of φ1 and φ′2 are given
in the following:

Inst(K) = Inst(φ1) = ¬ Show-To-Security-Operator-Ping-alerts(A′3) - (1)
and
Inst(T) = Inst(φ′2) = (Show-To-Security-Operator-Web-alerts(A′1)∨Show-To-Security-
Operator-Scan-alerts(A′2))×Show-To-Security-Operator-Ping-alerts(A′3) - (2)

• Computing satisfaction degrees: in Table 1, we give for each formula (1) in Inst(K)
and (2) in Inst(T) associated satisfaction degree (1, 2) if they are satisfied or not (∞)
given an interpretation.

• Preferred models: Three interpretations (bold line) satisfy the formulas (1) and (2) and
Show-Web-alerts(A′1) and Show-Scan-alerts(A′2) are true in two models, thus preferred

28

10 Salem Benferhat and Karima Sedki

alerts are Web-alerts(A′1) and Scan-alerts(A′2). This means that the security operator
will analyze in the first Web and Scan alerts.

3 Application of FO-MQCL to alert correlation

Intrusion Detection Systems use a specific format to report alerts in order to facilitate the
exploitation (analysis, explication, etc.) of these alerts. IDMEF (Intrusion Detection Message
Exchange Format) is one of the well-known used format [9]. IDMEF allows to define com-
mon data formats and exchange procedures for sharing important information to intrusion
detection and response systems and those that may need to interact with them. Using this
format, each generated alert is characterized by a set of attributes.

3.1 Description of inputs

The inputs of our approach contain four elements: a group of alerts generated by IDS, a set
of facts which gathers information describing each alert, a knowledge base and a preference
base of a security operator.
1. A group of alerts G produced by IDS: Each alert is characterized by a set of

attributes called basic attributes. Examples of basic attributes are: Timestamp, Signature
Identifier (SID), messages associated with alerts, Protocol, IP source and IP destination
addresses, source port and destination port, TTL (Time To Live), identification field
(ID), etc.

2. Alert Facts: Each alert’s attribute will be represented by a predicate symbol. The set of
predicates (or facts) containing values of alert’s attributes of G will be represented by K1.

Example 5. Assume that G contains one alert identified by id1. Assume that the at-
tributes concerning this alert are: IDS identity is Snort, the used protocol is TCP and
the class of attack is DoS. These facts will be represented by K1 = {IDS(id1, Snort),
Protocol(id1, TCP), Class(id1, DoS)}. Note that in general, some attributes may not be
informed (known) by an IDS.

We distinguish two kinds of facts:

(a) Alert facts: These facts are directly defined on basic attributes of alerts. Protocol(A1, TCP)
is an example of alert facts which indicates that the attribute protocol of alert A1

takes a value TCP .

(b) Other facts: These facts concern attributes that are not directly informed by the
IDS from which the alerts are issued. Direction of an alert is an example of this
kind of facts. It is based on source and target IP address. This information allows to
know the suspected direction of concerned alerts on the system (suspected-inbound,
suspected-outbound, suspected-inside).

3. Knowledge of a security operator: The security operator can provide some knowledge
or beliefs on networks, on system, etc. This knowledge base is denoted by K2, it contains
a set of universally quantified first order formulas (namely, formulas that do not involve
×). An example of simple knowledge which means that a security operator involves that
ftpwrite attack should be presented is the following rule: ∀x Sid(x, 553) ⇒ Show-To-
Security-Operator-alert(x).

29

A preference logic-based approach for Alert correlation 11

4. Preferences of a security operator: The security operator can express his preferences
according to what he wants to first analyze and what he would like to ignore. This will
be represented with a set of FO-MQCL formulas T . T contains the set of universally
quantified basic choice formulas (FO-BCF formulas) and a universally quantified gen-
eral choice formulas (FO-GCF formulas) which represent the preferences of the security
operator.

Example 6. Let φ be a universally quantified basic choice formula:

φ= ∀x, ∀y IDS(x, Snort) ∧ Type(x,Web) ∧ IDS(y,Bro) ∧ Type(y, Scan) ⇒ Show-To-
Security-Operator-alert(x) × Show-To-Security-Operator-alert(y).
Intuitively, this formula means that if an alert x is provided by the IDS Snort and concerns
an attack Web, and if an alert y is provided by the IDS Bro and concerns an attack Scan,
then the security operator prefers first to analyze the alert x, then the alert y.

3.2 Output of our model

The output of our model is a subset G′ ⊆ G. More precisely, the subset of alerts in G to be
first presented to a security operator.
To select alerts to be first presented to a security operator according to his preferences, we
need to preprocess available alerts and encode them in our logical framework. The result of
our model is given by the following algorithm:

Algorithm 1 (Define a set of preferred alerts)

• Inputs:
• G: The group of alerts in IDMEF format
• K2: The set of propositional formulas
• T: The set of preferences

• Transform each attribute in IDMEF format into a predicate fact to be added in K1

• Use NFO−MQCL (Definition 7) to normalize the set of universally quantified general choice formulas
from T if exists.

• Select only instantiated formulas that concern considered facts.
• Compute the satisfaction degrees of the instantiated formulas (Definition 6).
• Compute the preferred models (Definition 8)
• Finally, define G′ as a subset of alerts x, where Show-To-Security-Operator-Alert(x) is true in most

of preferred models. Namely, if one denotes |x| the number of preferred models that satisfy x, then
G′ = { x: x ∈ G, ¬∃ y, |y| > |x|}.

4 Experimental results on DADDi’s data

We present in this section some results on alerts produced by Snort IDS concerning DADDi1

data set (Dependable Anomaly Detection with Diagnosis) which are describing in the follow-
ing subsection.

1 The authors would like to thank the participants to the DADDi (http://www.rennes.supelec.fr/DADDi/)
project for providing this real data.

30

12 Salem Benferhat and Karima Sedki

4.1 Characteristics of DADDi data

Rough real network traffic concerning this data is collected on university campus in the
DADDi project (Dependable Anomaly Detection with Diagnosis) during spring 2007 (be-
tween May 24 and June 11 2007).
The traffic contains normal and some abnormal connections (Portscan, slammer (worm prop-
agation), bibtexRawHTTP, write-fs-HTTP3, login-http, etc.). Note that this traffic includes
inbound and outbound TCP, UDP and ICMP connections. Some information on
DAADi’s data are given in the following:

– Duration: 18 days of traffic.

– Size: 100 Giga octets.

– IP protocols: TCP (65.84%), UDP (19.66%), ICMP (14.50%).

– Services: HTTP (9.63%), SSH (1.11%), FTP (0.22%), auth (0.31%), DNS/Domain (15.02%),
etc.

The volume of collected data is important (100 files numbered 1 to 100, and where the size
of each file is around 1 Giga octets. These data are stored in files of 1 Giga octets each
one because we have used them for other operations such as processing the rough network
traffic into formated connection records described by useful features using our developed
tool [3].) and their analysis with Snort IDS have generated a large amount of alerts. For
experimentations studies, only the 15 first files (files #1-#5, #6-#10 and #11-#15) that are
available for all members of the project.

4.2 Expressing preferences and knowledge regarding DADDi data

Preferences and knowledge presented below are inspired from discussions between some mem-
bers of DADDi project, expressing what is desirable and what alerts should be discarded for
a security operator.

Security operator knowledge

• ∀x,∀y SameIPsrc(x, y) ∧ SameIPdst(x, y) ∧ SamePortsrc(x, y) ∧ SamePortdst(x, y)
∧ SameSid(x, y) ∧ T imestamp-Smaller-than(x, y) ∧Differ(x, y)⇒ Show-To-Security-
Operator-Alert(x) ∧¬Show-To-Security-Operator-Alert(y).

By this knowledge, the security operator wants to delete all redundant alerts. More pre-
cisely, if two alerts have the same source and destination IP addresses, same source and
destination ports and same signature, then only earlier alert is preserved.

• ∀x Protocol(x, ICMP) ∧ Type(x, 8) ∧ Code(x, 0)⇒ Show-To-Security-Operator-alert(x).
The security operator wants analyze alerts where ICMP type is equal to ”8” and the code
is ”0” (Ping alerts).

• ∀x Protocol(x, UDP) ∧ Port(x, 1434) ⇒ Show-To-Security-Operator-alert(x).

The security operator wants to analyze all ”UDP” alerts that concern packets sent to
port number 1334. These alerts represent ”SQL Slammer” vulnerability that is based on
buffer overflow in resolution service of SQL server.

31

A preference logic-based approach for Alert correlation 13

Security operator preferences

• ∀x, ∀y, Service(x, http) ∧ Service(y, other) ∧Differ(x, y)→ Show-To-Security-Operator-
alert(x) × Show-To-Security-Operator-alert(y).
This formula means that the security operator prefers to analyze ”http” alerts than oth-
ers.

• ∀x, ∀y,∀z Direction(x, suspected-inbound) ∧Direction(y, suspected-outbound) ∧Direction(z, suspected-
inside) ∧ Differ(x, y, z)
⇒ (Show-To-Security-Operator-alert(x) ∨ Show-To-Security-Operator-alert(y)) × Show-
To-Security-Operator-alert(z).
This formula indicates that the security operator prefers to analyze in the first ”suspected
inbound” or ”suspected outbound” alerts, and then ” suspected inside” alerts.

• ∀x, ∀y Host(x, suspected-Spider) ∧Host(y,Other) ∧Message(x, ”WEBMISC robots.txt
access”) ∧ Message(y, ”WEBMISC robots.txt access”) ∧ Differ(x, y) ⇒ Show-To-
Security-Operator-alert(y) × ¬ Show-To-Security-Operator-alert(x).

This preference concerns alerts reporting to robots programs2. Let us briefly recall the
description of this attack. To specify which pages to be not indexed, Web administrators
indicate these pages in a specific file robot.txt. This file is located at the root of the
website. Intruders try access to files
robot.txt where they can find important information concerning hidden files, trees direc-
tory secret or any other information that administrators have left by accident or neglect.
So, Snort raises an alert whenever the file robot.txt is accessed. The number of alerts
that are generated daily on accesses to the file robot.txt is very important (in the files
#1-#5 for example, we found 295 alerts).
To reduce the number of these alerts, a security operator can group these alerts accord-
ing to source host that accessed to the file robot.txt, and he can ignore alerts where
source hosts are known and trusted (such as known search engines). The preference above
aims to representing suspected alerts that represent accesses to the file robot.txt where
sources hosts do not belong to the group Spider (i.e. known search engines such as Google
and Yahoo).

Results of applying our model to different alerts are summarized in table 2.

Number of Number of reduction

alerts preferred alerts rate

Files #1-#5 76380 24953 67.33%

Files #6-#10 77825 31090 60.05%

Files #11-#15 97788 36615 62.55%

Total 251993 92658 63.31%

Table 2. Preferred alerts in DADDi data

2 Programs indexing web pages.

32

14 Salem Benferhat and Karima Sedki

We observe that the reduction rate of alerts is important. The set of preferred alerts contains
several suspicious alerts requiring analysis such as ”SQL Slammer”, ”Ping”, ”Access to the
robot.txt file”. Note that there is significant number of redundant Ping alerts, about (48592
alerts in the files #1-#5 for example). Of course, the security operator can reduce more the
number of alerts by considering that ”Ping” alerts are less important than the others. In this
case, the number of preferred alerts will be equal to 9671 in files #1-#5.

5 Conclusion

This paper has proposed a new logic called FO-MQCL (First Order-Minimal Qualitative
Choice Logic) which extends a fragment of the first order logic by adding a new logical
connective called ordered disjunction. This logic is rich because it has many advantages like
a representation of simple and complex preferences and knowledge of a security operator,
computing satisfaction degrees and preferred models of different knowledge and preferences,
normalization of preferences, etc. Since security operators cannot analyze a large number of
alerts produced by IDS, our logic is useful to filter alerts by presenting only alerts that fit
security operator knowledge and preferences. Experimental results on real data (provided
by DADDi project) show how useful and important our proposed logic contributes to the
reduction rate of reported alerts.

Acknowledgments

This works is supported by the SETIN06 project PLACID (Probabilistic graphical models
and Logics for Alarm Correlation in Intrusion Detection).

References

1. James P. Anderson, Computer security threat monitoring and surveillance, Anderson
Company, Pennsylvania, 1980.

2. Salem Benferhat and Karima Sedki, A revised qualitative choice logic for handling priori-
tized preferences, Ninth European Conference on Symbolic and Quantitative Approaches
to Reasoning with Uncertainty, oct 2007, pp. 635–647.

3. Salem Benferhat, Karima Sedki, and Karim Tabia, Reprocessing rough network traffic
for intrusion detection purposes, IADIS: International Conference Telecommunications,
Networks and Systems (Portugal), 2007.

4. Gerard Brewka, Salem Benferhat, and Daniel Le Berre, Qualitative choice logic, Artificial
Intelligence Journal(AIJ) 157 (2004), no. 1-2, 203–237.

5. Banerjee Arindam Chandola Varun and Kumar Vipin, Anomaly detection: A survey, In
ACM Computing Surveys Journal (2009).

6. Frédéric Cuppens and Fabien Autrel, Using an intrusion detection alert similarity oper-
ator to aggregate and fuse alerts, The 4th Conference on Security and Network Architec-
tures, 2005, pp. 6–10.

7. Frédéric Cuppens and Alexandre Miège, Alert correlation in a cooperative intrusion de-
tection framework, Proceedings of the 2002 IEEE Symposium on Security and Privacy
(USA), 2002, p. 202.

8. Frédéric Cuppens and Rodolphe Ortalo, Lambda: A language to model a database for de-
tection of attacks, RAID’00: Proceedings of the Third International Workshop on Recent
Advances in Intrusion Detection (London, UK), 2000, pp. 197–216.

33

A preference logic-based approach for Alert correlation 15

9. D. Curry and Herv Debar, Intrusion detection message exchange format data model and
extensible markup language (xml) document type definition, draft-itetfidwg- idmef-xml-
03.txt, 2001.

10. Klaus Julisch, Clustering intrusion detection alarms to support root cause analysis, Jour-
mal ACM Transactions on Information and System Security 6 (2003), 443–471.

11. Cédric Michel and Ludovic Mé, Adele: an attack description language for knowledge-based
intrusion detection, PIFIP/SEC, 2001, pp. 353–365.

12. Benjamin Morin and Hervé Debar, Correlation of intrusion symptoms: an application
of chronicles, Proceedings of the 6th International Conference on Recent Advances in
Intrusion Detection (RAID’03), 2003, pp. 94–112.

13. Benjamin Morin, Ludovic Mé, Hervé Debar, and Mireille Ducassé, A logic-based model
to support alert correlation in intrusion detection, Inf. Fusion 10 (2009), no. 4, 285–299.

14. Peng Ning, Yun Cui, and Douglas S. Reeves, Constructing attack scenarios through corre-
lation of intrusion alerts, CCS ’02: Proceedings of the 9th ACM conference on Computer
and communications security (New York, NY, USA), ACM, 2002, pp. 245–254.

15. Xi Peng, Yugang Zhang, Shisong Xiao, Zheng Wu, JianQun Cui, Limiao Chen, and
Debao Xiao, An alert correlation method based on improved cluster algorithm, Proceedings
of the 2008 IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial
Application (USA), 2008, pp. 342–347.

16. F. Sabahi and A. Movaghar, Intrusion detection: A survey, In Third International Con-
ference on Systems and Networks Communications, 2008, pp. 23–26.

17. Benferhat Salem and Sedki Karima, Alert correlation based on a logical handling of ad-
ministrator preferences and knowledge, International Conference on Security and Cryp-
tography (SECRYPT’08) (Porto, Portugal), jul 2008, pp. 50–56.

18. Hanaoka Miyuki Shimamura Makoto and Kono Kenji, Filtering false positives based
on server-side behaviors, In IEICE Transactions on Information and Systems Journal
2 (2008), 264–276.

19. Dondo Maxwell Smith Reuben, Japkowicz Nathalie and Mason Peter, Using unsuper-
vised learning for network alert correlation, In Advances in Artificial Intelligence Journal
(2008), 308–319.

20. Stuart Staniford, James A. Hoagland, and Joseph M. McAlerney, Practical automated
detection of stealthy portscans, Journal of Computer Security 10 (2002), no. 1-2, 105–
136.

21. Eric Totel, Bernard Vivinis, and Ludovic Mé, A language driven intrusion detection sys-
tem for events and alerts correlation, In Proceedings of the IFIP International Information
Security Conference, 2004, pp. 209–224.

22. Alfonso Valdes and Keith Skinner, Probabilistic alert correlation, Recent Advances in
Intrusion Detection (RAID 2001), Lecture Notes in Computer Science, no. 2212, Springer-
Verlag, 2001, pp. 54–68.

23. Chenfeng Vincent Zhou, Christopher Leckie, and Shanika Karunasekera, Decentralized
multi-dimensional alert correlation for collaborative intrusion detection, Journal of Net-
work and Computer Applications (2009).

34

Trust in complex actions

Julien Bourdon1, Guillaume Feuillade2, Andreas Herzig2, and Emiliano Lorini2

1. Kyoto University, Department of Social Informatics, Japan
2. Université de Toulouse, CNRS, IRIT, France

Abstract. Current formal models of trust are limited since they only consider
an agent’s trust in the atomic action of another agent and therefore do not apply
to trust in complex actions where the elements in the complex action are atomic
actions of different agents. Our aim is to present a logical formalization of trust in
complex actions, and to show that this formalization can be useful for the formal
characterization of trust in composite services, where trust in a composed service
is defined in a compositional way from trust in the components of that service.

1 Introduction

According to Castelfranchi and Falcone (C&F henceforth), the trust relation involves
a truster i, a trustee j, an action a that is performed by j and a goal ϕ of i [5, 7]. They
defined the predicate Trust as a goal together with a particular configuration of beliefs
of the trustee. Precisely, i trusts j to do a in order to achieve ϕ if and only if:

1. i has the goal that ϕ and
2. i believes that:

(a) j is capable to perform a,
(b) j is willing to perform a,
(c) j has the power to achieve ϕ by doing a.

C&F distinguish external from internal conditions in trust assessment: j’s capability to
perform a is an external condition, while j’s willingness to perform a is an internal con-
dition (being about the trustee’s mental state). Finally, j’s power to achieve ϕ by doing
a relates internal and external conditions: if j performs a then ϕ will result. Observe
that in the power condition the result is conditioned by the execution of a; therefore the
power condition is independent from the capability condition. In particular, j may well
have the power to achieve ϕ without being capable to perform a: for example, right now
I have the power to lift a weight of 50kg, but I am not capable to do this because there
is no such weight at hand.1

C&F did not investigate further how goals, capabilities, willingness and power have
to be defined; their definition might therefore be called semi-formal. Recently Herzig,

1 Together, capability to perform a and power to achieve ϕ by doing a amount to having a strat-
egy to achieve ϕ. Similar modalities were studied in Coalition Logic CL [17], Alternating-time
Temporal Logic ATL [1], and STIT theory [2]. However, these logics focus on game-theoretic
situations where an agent has the power to achieve ϕ whatever the other agents choose to do.
While this latter aspect will not be captured in our analysis here, we have shown in [12, 15]
how it could be integrated into our logical framework.

35

Lorini et al. analysed these predicates in more detail in [13, 14, 16]. First of all they
defined the predicate Trust0 as follows:

Trust0(i, j:a, ϕ) def
= Goal(i, ϕ) ∧ Beli(CExt(i:a) ∧ CInt(i:a) ∧ Res(i:a, ϕ))

where Goal(i, ϕ) corresponds to item 1 and CExt(i:a), CInt(i:a) and Res(i:a, ϕ) respec-
tively correspond to items 2a, 2b and 2c in C&F’s definition (and CExt and CInt stand
for the external and the internal conditions in trust assessment).2

They then defined the predicates CExt(j:a), CInt(j:a) and Res(j:a, ϕ) in terms of
the concepts of belief, choice, action and time. They draw a distinction between occur-
rent trust —i’s trust that j is going to perform a here and now— and dispositional trust:
i trusts that j is going to perform a whenever suitable conditions obtain. The above
definition is that of occurrent trust.

Both C&F and Herzig, Lorini et al. only considered trust in the atomic action of
another agent and did not consider trust in complex actions where the elements in the
complex action are atomic actions of different agents. Our aim in this article is to extend
their definition to complex actions, and to show that a definition of trust in complex
actions is extremely important in the context of composite services.

In the context of services architecture, some provider agents publish atomic ser-
vices; however, when a client agent needs to implement a more complex business pro-
cess, it must chain service calls, according to a specific workflow structure. Automating
the service calls is called service composition: given the business process to implement,
the control flow has to be computed in order to guarantee that the goal of the service
caller is satisfied.

Since services are provided by agents, users may trust some agents for certain ac-
tions but not for other actions which they deem critical, usually depending on the nature
of the information they have to send to this agent for the service action to perform the
action.

In current literature, for example in [18], service selection for composition assumes
the existence of a central authority guaranteeing the non-functional properties of the
services. In practice, such an authority might not exist, for example in P2P networks
[20], or may not itself be trustworthy.

To resolve the aforementioned problem, trust in complex action, supported by the
introduction of beliefs and trust in the description of services, could be used. With a
model for trust in the services world, one may express composition objectives as dy-
namic logic formulas with trust component. The service composition problem would
then reduce to the satisfaction of such a formula. This method would ensure that the
composition is correct and compatible with the beliefs of the user, thus ensuring a trust-
worthy sequence of service call for achieving the goal of the user.

The rest of the paper is organized as follows. In Section 2 we introduce a modal logic
of belief, goal, time, and complex actions. In Section 3 we define the trust predicate for
complex actions and study its constituents. In Section 4 we relate trust in complex

2 They used a 4-ary predicate Trust(i, j, a, ϕ) instead of our ternary Trust0(i, j:a, ϕ). More-
over, their trust definition was in terms of the predicates Capable(j:a), Willing(j:a) and
Power(j:a, ϕ) instead of our CExt(j:a), CInt(j:a) and Res(j:a, ϕ). We preferred our terms
and notations because they better generalize to complex actions.

36

actions to trust in atomic actions, providing thus a way to construct trust in complex
actions. In Section 5 we then discuss how this applies to service composition.

2 Background

We recall the logical framework of [13, 14, 16], that we extend towards complex actions.

2.1 A logical language with complex actions

Suppose given three countable sets: a set of propositional variables Atm, a set of agents
Agt and a set of atomic actions Act. Complex formulas ϕ and complex actions α are
defined by the following BNF:

ϕF p | ¬ϕ | ϕ ∧ ϕ | Beliϕ | Chiϕ | Feasibleαϕ | Happensαϕ | Fϕ
αF i:a | α;α | α+α | ϕ? | α∗

where p ranges over Atm, i ranges over Agt, and a ranges over Act. Beliϕ reads “i be-
lieves that ϕ”; Chiϕ reads “i chooses that ϕ”; Feasibleαϕ reads “there is a possible
execution of α after which ϕ is true”; Happensαϕ reads “α happens, and ϕ is true af-
terwards”; and Fϕ reads “ϕ will eventually be true”. Both Feasibleα and Happensα
are modal operators of the possible kind, and could be written 〈α〉 as in dynamic logic.
Note that they are different: Feasibleα>means that α is executable, while Happensα>
means that α is executed.

Operators Chi are used to denote an agent’s current chosen goals, that is, the goals
that the agent has decided to pursue here and now. We do not consider how an agent’s
chosen goals originate through deliberation from more primitive motivational attitudes,
called desires, and from moral attitudes, such as ideals and imperatives. Since the cho-
sen goals of an agent result from the its deliberation, they must satisfy two fundamental
rationality principles: chosen goals have to be consistent (i.e., a rational agent cannot
decide to pursue an inconsistent state of affairs); chosen goals have to be compatible
with the agent’s beliefs (i.e., a rational agent cannot decide to pursue something that it
believes to be impossible). These two principles will be formally expressed in Section
2.2.

Remark 1. In [13, 14, 16] Happensi:a was noted Doesi:a and read “a is going to be per-
formed by i”. We preferred Happens in order to allow for complex actions such as
i:a; j:b that are performed by more than one agent.

The atomic action i:a reads “i performs a”; the complex action α1;α2 reads “do α1
and then α2”; α1+α2 reads “choose nondeterministically between α1 and α2”, where
the choice is understood to be up to the environment (i.e., the other agents and nature),
and not up to the agents performing α1 and α2; ϕ? reads “if ϕ is true then continue, else
fail”; and finally, α∗ reads “do α an arbitrary number of times”.

We define Afterαϕ to be an abbreviation of ¬Feasibleα¬ϕ, which therefore has
to be read “if the execution of α is possible then ϕ holds afterwards”. Moreover, the
following standard program constructions are defined as follows:

37

skip
def
= >?

fail
def
= ⊥?

if ϕ then α1 else α2
def
= (ϕ?;α1)+(¬ϕ?;α2)

while ϕ do α
def
= (ϕ?;α)∗;¬ϕ?

In our application the actions seem never to be joined actions (which here would be
something like translating a text together). For that reason we define parallel composi-
tion as interleaving, i.e. α||β def

= (α; β)+(β;α). In this way we can avoid introducing ||
as a primitive.

2.2 Semantics

We take over the semantics of [14] and extend it to complex actions, whose semantics
we take over from Propositional Dynamic Logic PDL. We call the resulting logicL. The
semantics of L is in terms of a class of frames that has to satisfy several constraints.

Frames A frame is a tuple M = 〈W, A, B,C,D〉 that is defined as follows.

– W is a nonempty set of possible worlds or states.
– A : Agt × Act −→ 2W×W maps every agent i and action a to a relation Ai:a between

possible worlds in W.
– B : Agt −→ 2W×W maps every agent i to a serial, transitive and Euclidean3 relation

Bi between possible worlds in W.
– C : Agt −→ 2W×W maps every agent i to a serial relation Ci between possible worlds

in W.
– D : Agt × Act −→ 2W×W maps every agent i and action α to a deterministic relation

(alias a partial function) Di:a between possible worlds in W.4

It is convenient to view relations on W as functions from W to 2W ; therefore we
write Di:a(w) for the set {w′ | (w,w′) ∈ Di:a}, etc.

When w′ ∈ Ai:a(w) then if at w agent i performs α then this might result in w′. Bi(w)
is the set of worlds that are compatible with agent i’s beliefs at w; the conditions of
seriality, transitivity and Euclideanity are those of the standard logic of belief KD45.
Ci(w) is the set of worlds that are compatible with agent i’s choices at w; seriality corre-
sponds to consistency of choices, which is the only condition that is generally imposed
on choices. Di:a(w) is the set of worlds w′ that can be reached from w through the oc-
currence of agent i’s action a. If (w,w′) ∈ Di:a then w′ is the unique actual successor
world of w, that will be reached from w through the occurrence of agent i’s action a at
w: at w agent i performs an action a, resulting in the next state w′. (We might also say
that Di:a is a partial function.) If Di:a(w) , ∅ then we say that Di:a is defined at w.

3 A relation Bi on W is Euclidean if and only if, if (w,w′) ∈ Bi and (w,w′′) ∈ Bi then (w′,w′′) ∈
Bi.

4 A relation Di:a is deterministic iff, if (w,w′) ∈ Di:a and (w,w′′) ∈ Di:a then w′ = w′′.

38

Constraints on frames Frames will have to satisfy some constraints in order to be
legal L-frames. For every i, j ∈ Agt, α, β ∈ Act and w ∈ W we suppose:

C1 if Di:a and D j:b are defined at w then Di:a(w) = D j:b(w).

Constraint C1 says that if w′ is the next world of w which is reached from w through
the occurrence of agent i’s action α and w′′ is also the next world of w which is reached
from w through the occurrence of agent j’s action β, then w′ and w′′ denote the same
world. Indeed, we suppose that one agent acts at a time, and that every world can only
have one next world. Note that C1 implies determinism of every Di:a (so we might have
omitted that from the above constraints on D).

Therefore, when w′ ∈ Ai:a(w) but Di:a(w) = ∅ then at w agent i does not perform α,
but if it did so it might have produced another outcome world w′.

Moreover, for every i ∈ Agt, α ∈ Act we suppose:

C2 Di:a ⊆ Ai:a.

The constraint C2 says that if w′ is the next world of w which is reached from w through
the occurrence of agent i’s action α, then w′ must be a world which is reachable from
w through the occurrence of agent i’s action α.

The next constraint C3 links the agents’ choices with what they do: if a is executable
and i chooses to do a then a is going to happen.

C3 if Ai:a is defined at w and Di:a is defined at w′ for all w′ ∈ Ci(w) then Di:a is
defined at w.

The following semantic constraint C4 is also about the relationship between an
agent i’s choices (i.e., chosen worlds) and the actions performed by i. For every i ∈ Agt,
α ∈ Act and w ∈ W, we suppose that:

C4 if w′ ∈ Ci(w) and Di:a is defined at w, then Di:a is defined at w′.

In other words, if it is not the case that i performs a in all of i’s chosen worlds then i is
not going to perform a.

The next constraint relates worlds that are compatible with agent i’s beliefs and
worlds that are compatible with i’s chosen goals: as motivated in the beginning of Sec-
tion 2.1, they should not be disjoint. For every i ∈ Agt and w ∈ W:

C5 Ci(w) ∩ Bi(w) , ∅.

The next constraint on L-frames is one of introspection w.r.t. choices. For every
i ∈ Agt and w ∈ W:

C6 if w′ ∈ Bi(w) then Ci(w) = Ci(w′).

The next two constraints on L-frames are what is called ‘no learning’ and ‘no for-
getting’ for beliefs in the literature [6]. For every i, j ∈ Agt, a ∈ Act and w ∈ W:

C7 if (w, v) ∈ A j:a ◦Bi and there is u such that (w, u) ∈ Bi ◦A j:a then (w, v) ∈ Bi ◦A j:a

C8 if (w, v) ∈ Bi ◦ A j:a and there is u such that (w, u) ∈ A j:a then (w, v) ∈ A j:a ◦ Bi,

39

where ◦ is the standard composition operator between two binary relations. Thus, we
suppose that events are always uninformative, in the sense: i should not forget anything
about the particular effects of j’s action a that starts at a given world w, and i should
not learn anything new due to the occurrence of j’s action a that starts at a given world
w (except the occurrence of that very action). In other words, what an agent i believes
at a world v after the occurrence of j’s action a, only depends on what i believed at the
previous world w and on the action which has occurred and which was responsible for
the transition from w to v. Note that the ‘no forgetting’ and ‘no learning’ constraints
rely on an additional assumption that actions are public: it is supposed that j’s action a
occurs if and only if every agent is informed of this fact.

We have similar principles of no learning and no forgetting for the relations Di:a.
For every i, j ∈ Agt, a ∈ Act and w ∈ W:

C9 if (w, v) ∈ D j:a◦Bi and there is u such that (w, u) ∈ Bi◦A j:a then (w, v) ∈ Bi◦D j:a;
C10 if (w, v) ∈ Bi ◦ D j:a and there is u such that (w, u) ∈ D j:a then (w, v) ∈ D j:a ◦ Bi.

Models and truth conditions A model is a tuple M = 〈W, A, B,C,D,V〉 where the
tuple 〈W, A, B,C,D〉 is a frame and V : Atm→ 2W is a valuation.

Formulas and events are interpreted according to the following clauses.
Rα;β = Rα ◦ Rβ

Rα+β = Rα ∪ Rβ

Rϕ? = {〈v, v〉 | v ∈ W and M, v |= ϕ}
Rα∗ = (Rα)∗

M,w |= p iff w ∈ V(p)
M,w |= Beliϕ iff M,w′ |= ϕ for every w′ ∈ Bi(w)

M,w |= Chiϕ iff M,w′ |= ϕ for every w′ ∈ Ci(w)
M,w |= Feasibleαϕ iff M,w′ |= ϕ for some w′ ∈ Aα(w)

M,w |= Happensαϕ iff M,w′ |= ϕ for some w′ ∈ Dα(w)
M,w |= Fϕ iff M,w′ |= ϕ for some w′ such that w(

⋃
a∈Act Da)∗w′

The clauses for the Boolean operators are as usual. The last clause is based on the
hypothesis that time flow is determined by the actions that are performed (where the Da

and
⋃

a∈Act Da are understood as relations).
⋃

a∈Act Da(w) is the set of worlds w′ that are
in the future of w: w′ can be attained from w by some D-chain, i.e. by some sequence
of actions.

2.3 Some useful validities

We now state some validities of our logic that will be useful later.5

Proposition 1. The following formulas are valid:

5 We do not give a completeness result: there is such a result (albeit for a simpler language)
in [14], which should be extended in order to account for complex actions; in particular the
Kleene star “∗” requires a fixpoint axiom and a least fixpoint axiom, which makes that the
completeness proof is not straightforward.

40

1. Afterϕ?ψ↔ (ϕ→ ψ)
2. Happensϕ?ψ↔ (ϕ ∧ ψ)
3. Happensα;βϕ↔ (Happensα> ∧ ¬Happensα¬Happensβϕ)
4. Happensα+βϕ↔ (Happensαϕ ∨ Happensβϕ)
5. Happensα∗ϕ↔ (ϕ ∧ HappensαHappensα∗ϕ)
6. (F¬ϕ ∧ Afterα∗ (ϕ→ Happensα>))→ Happenswhile ϕ do α>
7. Happensαϕ→ Feasibleαϕ
8. Feasibleαϕ→ Fϕ
9. (Happensαϕ ∧ Afterαψ)→ Happensα(ϕ ∧ ψ)

10. ¬(Chiϕ ∧ Beliϕ)
11. (Feasiblei:aϕ ∧ ChiHappensi:a>)→ Happensi:a>

12. (¬Beli¬Feasibleα> ∧ BeliAfterαϕ)→ AfterαBeliϕ
13. (Feasibleα> ∧ AfterαBeliϕ)→ BeliAfterαϕ
14. (¬Beli¬Happensα> ∧ Beli¬Happensα¬ϕ)→ ¬Happensα¬Beliϕ
15. (Happensα> ∧ ¬Happensα¬Beliϕ)→ Beli¬Happensα¬ϕ

Formula 11 is a principle of intentional action IntAct. The last four are principles of no
forgetting (NF, alias perfect recall) and no learning (NL, alias no miracles) for beliefs.
Similar principles have been studied in [8, 19, 11].

3 Trust about complex actions

We now generalize the definition of (occurrent) trust about atomic actions of [13, 14,
16] to trust about complex actions and study its constituents. Among all possible com-
plex actions we here only consider deterministic actions [9]: actions built with “skip”,
“fail”, “;”, “if ϕ then α1 else α2”, and “while ϕ do α”. Their BNF is:

αF i:a | skip | fail | α;α | if ϕ then α else α | ϕ? | while ϕ do α

Tests ϕ? can be defined as if ϕ then skip else fail. In our analysis of trust in com-
plex actions we do not consider the other program operators of PDL, viz. nondetermin-
istic composition and iteration.

Let us first recall the definition of the original trust predicate in [13, 14, 16]. There,
the goal condition Goal(i, ϕ) was defined as ChiFϕ, i.e. as i’s choice of futures where
ϕ holds. The external condition CExt(j:a) was defined as Feasible j:a> (j:a is exe-
cutable), and the internal condition CInt(j:a) as Ch jHappens j:a> (j chooses that j:a is
going to occur). Finally, the power condition Res(j:a, ϕ) was defined as After j:aϕ (ϕ
will hold immediately after every possible performance of j:a).

It turns out that our move from trust in atomic actions to trust in complex actions
requires some adjustments.

3.1 Definition of trust

First of all, here is our official definition of trust in a complex action:

Trust(i, α, ϕ) def
= Goal(i, ϕ) ∧ Beli(CExt(α) ∧ CInt(α) ∧ Res(α, ϕ))

41

where i is an agent, α is a deterministic action, and ϕ is a formula. As before, CExt and
CInt stand for the external and the internal conditions in trust assessment; they will be
defined in the sequel. We have thus simply replaced the atomic actions in our definition
of Section 1 by complex actions.

Observe that trust in atomic actions involved a single trustee j. Here we have to ac-
count for trust in complex actions that may be performed by several agents; we therefore
consider trust in a group of agents.

Note also that before, the trustee j —which here would be a set of agents J—
appeared explicitly in the definition of the predicate Trust. However, one may consider
that J is implicitly already there: it is the set of agents occurring in α. Therefore the
agent argument need not appear as a separate argument in the definition.

It remains to explain the predicates on the right hand side of the definition of trust.

3.2 Defining the ingredients of trust

We now reduce the predicates on the right hand side of the definition of trust.

Goal The definition of the Goal predicate transfers straightforwardly because no ac-
tion occurs in it:

Goal(i, ϕ) def
= ChiFϕ

So it remains to define CExt, CInt and Res.

Result The original power condition BeliAfter j:aϕ stipulated that i believes ϕ im-
mediately results from j’s performance of atomic action a. However, consider i’s trust
in j1 and j2 to perform the sequence of actions j1:a1; j2:a2 in order to achieve i’s goal
ϕ. With respect to which goal should i trust j1? The truster i typically does not bother
about the direct effect of j1’s action a1 and is only interested in the overall effect ϕ of
the complex action j1:a1; j2:a2. In other words, we have to account for the case where
ϕ is not achieved immediately, but only at some time point in the future. We therefore
redefine

Res(α, ϕ) def
= AfterαFϕ

Under the other definitions to come, the original Trust0(i, j:a, ϕ) will be equivalent to
our Trust(i, j:a, Fϕ).

External and internal condition Up to now, all our definitions were directly in terms
of well-defined formulas of our logic. Things are not as simple for the external condition
CExt and for the internal condition CInt.

In [13, 14, 16], using axiom IntAct it was proved that
(CExt(i:a) ∧ CInt(i:a))→ Happens(i:a)

is valid. That is, if both the external condition and the internal condition for the execu-
tion of action a by agent i obtain —i.e., i is capable to perform action a and is willing
(has the intention) to perform a— then i performs a. We would like to keep this principle
of intentional action, and therefore need a definition of the CExt and CInt predicates

42

validating
(CExt(α) ∧ CInt(α))→ Happens(α)

In particular, we will have to include a condition guaranteeing that while-loops are ex-
ited (because Happenswhile ψ do α> implies that F¬ψ).

As to the external condition, CExt(α) means that the complex action α is exe-
cutable whatever the other agents and nature choose to do. This means that the pre-
conditions of α must obtain at every step of every execution of α. It follows that while
CExt(α) implies Feasibleα>, it should not be equivalent to it. For example, the com-
plex action (i:a+i:a′); i:b cannot be said to be executable (in the above sense) when just
Feasiblei:a+i:a′;i:b> holds. Indeed, a situation where Feasiblei:a′Afteri:b> is compat-
ible with the latter formula, and if nature chooses i:a′ when executing the nondetermin-
istic i:a+i:a′ then it cannot be said that Feasiblei:a+i:a′;i:b> is executable.

Given these considerations we recursively define CExt(α) as follows:

CExt(i:a) def
= Feasiblei:a>

CExt(skip) def
= >

CExt(fail) def
= ⊥

CExt(α; β) def
= CExt(α) ∧ AfterαCExt(β)

CExt(if ϕ then α1 else α2) def
= (ϕ ∧ CExt(α1)) ∨ (¬ϕ ∧ CExt(α2))

CExt(while ψ do α) def
= F¬ψ ∧ After(ψ?;α)∗;ψ?CExt(α)

It is the clause for “;” that makes that CExt(α) stronger than Feasibleα>.

As to the (internal) willingness condition, it is tempting to define CInt(α) as∧
j∈Agt(α) Ch jHappensα>,

where Agt(α) is the set of agent names occurring in α: every agent involved in the
complex action α chooses that α happens. However, this would be too strong. Indeed,
consider the scenario where j1:a1 is j1’s action of requesting j2 to do a2, and where j2
initially prefers not to be asked by j1, i.e. Ch j2¬Happens j1:a1

⊥, but intends to perform
j2:a2 after j1’s request. In symbols, we have a situation where Happens j1:a1; j2:a2

> and
¬Ch j2Happens j1:a1; j2:a2

> is true.
Such considerations lead to the following recursive definition of the predicate CInt.

CInt(i:a) def
= ChiHappensi:a>

CInt(fail) def
= >

CInt(skip) def
= >

CInt(α; β) def
= CInt(α) ∧ AfterαCInt(β)

CInt(if ϕ then α1 else α2) def
= (ϕ ∧ CInt(α1))∨

(¬ϕ ∧ CInt(α2))

CInt(while ψ do α) def
= After(ψ?;α)∗;ψ?CInt(α)

43

3.3 A principle of intentional action for complex actions

We are now going to relate the predicates CExt and CInt with the modal operator
Happens. We prove that when α is complex then one half of the axiom IntAct remains
valid.

Proposition 2. The formula CExt(α)→ Feasibleα> is valid.

Proof. The proof is by induction on the structure of α.

As mentioned above, the other direction Feasibleα> → CExt(α) is guaranteed to
be valid only when α is atomic.

Proposition 3. The formula (CExt(α) ∧ CInt(α))→ Happensα> is valid.

Proof. We use induction on the structure of α. The base cases are ensured by the axiom
IntAct and by Proposition 1. For the induction step we have:
CExt(α; β) ∧ CInt(α; β)
↔ CExt(α) ∧ AfterαCExt(β) ∧ CInt(α) ∧ AfterαCInt(β)
→ Happensα> ∧ AfterαHappensβ> (by I.H.)
→ Happensα;β> (by Prop. 1)

CExt(if ψ then α else β) ∧ CInt(if ψ then α else β)
↔ (ψ→ (CExt(α) ∧ CInt(α)) ∧ (¬ψ→ (CExt(β) ∧ CInt(β))
→ (ψ→ Happensα>) ∧ (¬ψ→ Happensβ>) (by I.H.)
→ Happensif ψ then α else β> (by Prop. 1)

CExt(while ψ do α) ∧ CInt(while ψ do α)
↔ F¬ψ ∧ After(ψ?;α)∗;ψ?(CExt(α) ∧ CInt(α))
→ F¬ψ ∧ After(ψ?;α)∗ (ψ→ Happensα>) (by I.H.)
→ F¬ψ ∧ After(ψ?;α)∗ (ψ→ Happensψ?;α>)
→ Happenswhile ψ do α> (by Prop. 1)

As said above, the other direction of Proposition 3
Happensi1:a1;i2:a2

> → (CExt(i1:a1; i2:a2) ∧ CInt(i1:a1; i2:a2))
is invalid because i1’s performance of a1 may cause i2’s performance of a2.

We finally observe that when the truster’s goal is > then trust in α amounts to the
conjunction of external and internal condition.

Proposition 4. The formula Trust(i, α,>)↔ Beli(CExt(α) ∧ CInt(α)) is valid.

4 Properties of trust

In this section we state the properties of trust in complex actions, alias workflow con-
structs.

First of all and as announced in Section 3.2 we observe that our and the original
definition coincide for atomic actions, except that we have relaxed the result condition:

44

for us it suffices that the result ϕ obtains at some point in the future, and not immediately
after the action. We therefore have Trust(i, j:a, ϕ)↔ Trust0(i, j:a, Fϕ).

For complex actions we are going to have reductions in terms of equivalences for the
cases of skip, fail, if-then-else conditionals and while loops. For trust in sequential
compositions we only give a sufficient condition. We only give some of the proofs.

4.1 Atomic actions

Theorem 1. The formulas Trust(i, fail, ϕ)↔ ⊥ and
Trust(i, skip, ϕ)↔ (Goal(i, ϕ) ∧ BeliFϕ)

are valid.

4.2 Sequential composition

Our first theorem allows to construct trust in a sequence α; β from trust in α and trust
in β.

Theorem 2. The formula
(Trust(i, α, ϕ) ∧ BeliAfterαTrust(i, β, ϕ))→ Trust(i, (α; β), ϕ)

is valid.

Proof. We have:
Trust(i, α, ϕ) ∧ BeliAfterαTrust(i, β, ϕ)

→ Goal(i, ϕ) ∧ Beli(CExt(α) ∧ CInt(α))∧
BeliAfterαBeli(CExt(β) ∧ CInt(β) ∧ AfterβFϕ)

→ Goal(i, ϕ) ∧ Beli(CExt(α) ∧ CInt(α))∧
Beli(Afterα⊥ ∨ BeliAfterα(CExt(β) ∧ CInt(β) ∧ AfterβFϕ))

(by NL of Prop. 1)
→ Goal(i, ϕ) ∧ Beli(CExt(α) ∧ CInt(α))∧

BeliBeliAfterα(CExt(β) ∧ CInt(β) ∧ AfterβFϕ)
→ Goal(i, ϕ) ∧ Beli(CExt(α) ∧ CInt(α)) ∧ BeliAfterα(CExt(β) ∧ CInt(β) ∧ AfterβFϕ)
↔ Goal(i, ϕ) ∧ Beli(CExt(α) ∧ AfterαCExt(β))∧

Beli(CInt(α) ∧ AfterαCInt(β)) ∧ BeliAfterαAfterβFϕ
↔ Goal(i, ϕ) ∧ Beli(CExt(α; β) ∧ CInt(α; β) ∧ Afterα;βFϕ)
= Trust(i, (α; β), ϕ)

The next two theorems are about the consequences of trust in a sequence of actions.

Theorem 3. The formula
Trust(i, (α; β), ϕ)→ Trust(i, α, ϕ)

is valid.

Proof. We have:

45

Trust(i, (α; β), ϕ)
↔ Goal(i, ϕ) ∧ Beli(CExt(α) ∧ AfterαCExt(β))∧

Beli(CInt(α) ∧ AfterαCInt(β)) ∧ BeliAfterα;βFϕ
↔ Goal(i, ϕ) ∧ Beli(CExt(α) ∧ CInt(α))∧

BeliAfterα(CExt(β) ∧ CInt(β) ∧ AfterβFϕ)
→ Goal(i, ϕ) ∧ Beli(CExt(α) ∧ CInt(α)) ∧ BeliAfterα(Happensβ> ∧ AfterβFϕ)

(by Prop. 3)
→ Goal(i, ϕ) ∧ Beli(CExt(α) ∧ CInt(α)) ∧ BeliAfterαHappensβFϕ (by Prop. 1)
↔ Goal(i, ϕ) ∧ Beli(CExt(α) ∧ CInt(α)) ∧ BeliAfterαFϕ (by Prop. 1)
↔ Trust(i, α, ϕ)

Our last theorem says that trust persists under the condition that the goal persists.

Theorem 4. The formula
Trust(i, (α; β), ϕ)→ Afterα(¬Goal(i, ϕ) ∨ Trust(i, β, ϕ))

is valid.

Proof. First, observe that

Trust(i, (α; β), ϕ)→ BeliFeasibleα> (*)

is valid by Proposition 3 and Proposition 1. Now:
Trust(i, (α; β), ϕ)
→ BeliAfterα(CExt(β) ∧ CInt(β) ∧ AfterβFϕ)
→ BeliAfterα⊥ ∨ AfterαBeli(CExt(β) ∧ CInt(β) ∧ AfterβFϕ) (by NF of Prop. 1)
→ AfterαBeli(CExt(β) ∧ CInt(β) ∧ AfterβFϕ) by (*)

4.3 If-then-else

Theorem 5. The formula

Trust(i, if ψ then α else β, ϕ)↔ Beli((ψ→ Trust(i, α, ϕ))∧
(¬ψ→ Trust(i, β, ϕ)))

is valid.

Proof. We have:
Trust(i, if ψ then α else β, ϕ)
↔ Goal(i, ϕ)∧
Beli((ψ→ CExt(α)) ∧ (¬ψ→ CExt(β)))∧
Beli((ψ→ CInt(α)) ∧ (¬ψ→ CInt(β))))∧
Beli((ψ→ AfterαFϕ) ∧ (¬ψ→ AfterβFϕ))

↔ BeliGoal(i, ϕ)∧
Beli(ψ→ (CExt(α) ∧ CInt(α) ∧ AfterαFϕ))∧
Beli(¬ψ→ (CExt(β) ∧ CInt(β) ∧ AfterβFϕ))

↔ Beli((ψ→ Trust(i, α, ϕ)) ∧ (¬ψ→ Trust(i, β, ϕ)))

46

4.4 While

Theorem 6. The formula
Trust(i, (while ψ do α), ϕ)↔ (BeliAfter(ψ?;α)∗ (ψ→ (CExt(α) ∧ CInt(α)))∧

Goal(i, ϕ) ∧ BeliAfterwhile ψ do αFϕ ∧ BeliF¬ψ)
is valid.

Proof. We have:
Trust(i, (while ψ do α), ϕ)↔ Goal(i, ϕ) ∧ BeliAfterwhile ψ do αFϕ∧

Beli(CExt(while ψ do α) ∧ CInt(while ψ do α))
↔ Goal(i, ϕ) ∧ BeliAfterwhile ψ do αFϕ ∧ BeliF¬ψ∧
BeliAfter(ψ?;α)∗ (ψ→ (CExt(α) ∧ CInt(α)))

5 Application

Services-oriented architectures (SOA) allow to develop dynamic business processes and
agile applications spanning across organisations and computing platforms to quickly
adapt to ever changing requirements. By their modular nature, services can be com-
posed to implement processes of various complexities.

Actors of SOA are divided into two rules, the client, having specific requirements,
and the provider advertising its services. Non-functional parameters, such as quality of
service (QoS) become important when selecting among a range of functionally equiva-
lent services. However, in certain cases, discrepancies between advertised and observed
QoS can occur, either because of temporary failures or voluntary over-rating from the
provider. When facing such uncertainties, trust mechanisms should be used to select
services matching the goals of the clients and providers.

Trust becomes even more crucial in composite services, where not only the client
must trust the composite service but also where each provider involved in the composi-
tion must trust its partners [4]. Composite services can be modelled as a set of workflow
patterns [10], which are equivalent to the complex action framework described in Sec-
tion 4. Indeed, trust in a composite service depends on the services involved but also on
the structure workflow. For example, a provider might agree to participate in a compos-
ite service if only its service is used at the end of a sequence, notably for data privacy
concerns [3].

In the aforementioned paper, a multi-agent protocol is developed to entice providers
to take part in composite web services. This protocol is centered around data privacy
in composite services. Basically, and according to Theorem 4, a provider is willing to
enter a composite service if and only if it trusts the providers of subsequent services
to not mishandle its data. In other words the goal ”not mishandle the data” only holds
after its won service invocation thus fostering the need for trust.

6 Conclusion

We have presented in this work a logical formalization of trust in complex actions, and
have sketched how this formalization could be useful for the formal characterization of

47

trust in composite services, where trust in a composed service is defined in a compo-
sitional way from trust in the components of that service. Directions of future research
are manifold. In the present article we only gave a semantics for a logic of complex
actions. On the one hand, future works will be devoted to find a complete axiomatiza-
tion of the logic of Section 2 and to study the computational properties of this logic
(decidability and complexity). On the other hand, we plan to extend the PDL-based for-
malism of Section 2 by parallel actions in order to be able to formalize services whose
components might work in parallel.

7 Acknowledgements

We would like to thank the anonymous reviewers of LIS’2010 whose comments (hope-
fully) helped to improve the paper.

References

1. Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time temporal logic.
In Proc. 38th IEEE Symposium on Foundations of Computer Science, Florida, October 1997.

2. Nuel Belnap, Michael Perloff, and Ming Xu. Facing the Future: Agents and Choices in Our
Indeterminist World. Oxford University Press, Oxford, 2001.

3. Julien Bourdon and Toru Ishida. Trust chaining for provider autonomy in composite services.
In Joint Agent Workshop and Symposium (JAWS’09), 2009.

4. Julien Bourdon, Laurent Vercouter, and Toru Ishida. A multiagent model for provider-
centered trust in composite web services. In The 12th International Conference on Principles
of Practice in Multi-Agent Systems (PRIMA 2009), number 5925 in LNAI, pages 216–228.
Springer Verlag, 2009.

5. Cristiano Castelfranchi and Rino Falcone. Principles of trust for MAS: Cognitive anatomy,
social importance, and quantification. In Proceedings of the Third International Conference
on Multiagent Systems (ICMAS’98), pages 72–79, 1998.

6. Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reasoning about
Knowledge. MIT Press, 1995.

7. Rino Falcone and Cristiano Castelfranchi. Social trust: A cognitive approach. In C. Castel-
franchi and Y. H. Tan, editors, Trust and Deception in Virtual Societies, pages 55–90. Kluwer,
2001.

8. J. Halpern and M. Vardi. The complexity of reasoning about knowledge and time. Journal
of Computer and System Sciences, 38:195–237, 1989.

9. J.Y. Halpern and J. H. Reif. The propositional dynamic logic of deterministic, well-structured
programs. Theoretical Computer Science, 27:127–165, 1983.

10. Q. He, J. Yan, H. Jin, and Y. Yang. Adaptation of web service composition based on workflow
patterns. Proceedings of the 6th International Conference on Service-Oriented Computing
(ICSOC’08), Jan 2008.

11. Andreas Herzig and Dominique Longin. C&L intention revisited. In Proc. 9th International
Conference on Principles of Knowledge Representation and Reasoning (KR 2004), pages
527–535. AAAI Press, 2004.

12. Andreas Herzig and Emiliano Lorini. A dynamic logic of agency I: STIT, abilities and
powers. Journal of Logic, Language and Information, 19:89–121, 2010.

48

13. Andreas Herzig, Emiliano Lorini, Jomi F. Hübner, Jonathan Ben-Naim, Olivier Boissier,
Cristiano Castelfranchi, Robert Demolombe, Dominique Longin, Laurent Perrussel, and
Laurent Vercouter. Prolegomena for a logic of trust and reputation. In 3rd International
Workshop on Normative Multiagent Systems (NorMAS 2008), Luxembourg, 15/07/2008-
16/07/2008, pages 143–157, http://wwwen.uni.lu/fdef/luxembourg business academy/press,
2008. University of Luxembourg Press. ISBN: 2919940481.

14. Andreas Herzig, Emiliano Lorini, Jomi F. Hübner, and Laurent Vercouter. A logic of trust
and reputation. Logic Journal of the IGPL, 18(1):214–244, February 2010. Special Issue
“Normative Multiagent Systems”.

15. Emiliano Lorini. A dynamic logic of agency II: deterministic DLA, Coalition Logic, and
game theory. Journal of Logic, Language and Information, 19(3):327–351, 2010.

16. Emiliano Lorini and Robert Demolombe. Trust and norms in the context of computer se-
curity. In Proc. Ninth International Conference on Deontic Logic in Computer Science
(DEON’08), number 5076 in LNCS, pages 50–64. Springer-Verlag, 2008.

17. Marc Pauly. A modal logic for coalitional power in games. Journal of Logic and Computa-
tion, 12(1):149–166, 2002.

18. E. Sirin, B. Parsia, and J. Hendler. Composition-driven filtering and selection of semantic
web services. In AAAI Spring Symposium on Semantic Web Services, pages 129–138, 2004.

19. J. van Benthem and E. Pacuit. The tree of knowledge in action: Towards a common perspec-
tive. In G. Governatori, I. Hodkinson, and Y. Venema, editors, Proc. of Advances in Modal
Logic Volume 6 (AiML 2006), pages 87–106. College Publications, 2006.

20. Y. Wang and J. Vassileva. Trust and reputation model in peer-to-peer networks. In Pro-
ceedings of the 3rd International Conference on Peer-to-Peer Computing, pages 150–157,
Linkoeping, Sweden, 2003. IEEE Press.

49

New decidability result for ground entailment
problems and application to security protocols

Yannick Chevalier Mounira Kourjieh

IRIT, Université de Toulouse, France

Abstract. Basin and Ganzinger [3] have proved that for finite sets of
clauses saturated for ordered resolution, the ground entailment problem
is order local. This implies decidability of ground entailment problems
when the employed term ordering has a finite complexity. We present
in this paper an extension of that result that does not assume finite
complexity of the term ordering, and we show an application of this
result on the security protocols.

1 Introduction

Resolution is an inference rule introduced by Robinson [17] for theorem proving
in first-order logic. It consists of saturating a theory represented by a finite set of
disjunctions, called clauses, with all its consequences; It is correct and complete
for refutation [2]: for every unsatisfiable set of clauses, resolution will eventually
lead to the empty clause, i.e. a clause that can never be satisfied.

Since the seminal work of Robinson lot of efforts have been devoted to finding
strategies that limit the possible inferences but still are complete for refutation.
The correctness of resolution implies the correctness of these strategies. Among
these, there is the ordered resolution which is refutationally complete [1]. Later,
it was proved in [3] that if a set S of clauses is saturated for ordered resolution
with respect to a term ordering of finite complexity then the ground entailment
problem for S – i.e. deciding whether a clause without variables is a consequence
of S – is decidable. We recall that a term ordering is said to be with finite com-
plexity if every term t has a finite number of terms smaller or equal than t with
respect to the given ordering. We present in this paper another decidability result
for the ground entailment problem which does not assume a finite complexity
for the term ordering, and we show an application of such result on the analysis
of security protocols.

Outline of this paper. In Section 2 we introduce briefly some of the basic
notions we employ in this paper. In Section 3, we introduce our notions of re-
dundancy and saturation, and we give our decidability result. In Section 4, we
show an application of our result on cryptographic protocols.

50

2 Formal setting

2.1 Basic notions

Syntax. Let X be an infinite set of variables, C an infinite set of constant symbols,
P a set of predicate symbols with arities, and F a set of function symbols with
arities. The arity of a function symbol (respectively predicate symbol) indicates
the number of arguments that the function symbol (respectively the predicate
symbol) expects. We define the set of terms T (F ,X) as follows: X , C ⊆ T (F ,X),
and for each function symbol f ∈ F with arity n ≥ 0, for each terms t1, . . . , tn ∈
T (F ,X), we have f(t1, . . . , tn) ∈ T (F ,X); And we denote by T (F) the set of
terms of T (F ,X) that does not contain variables. We define atoms as follows: if I
is a predicate symbol in P with arity n ≥ 0, and t1, . . . , tn are terms in T (F ,X),
then I(t1, . . . , tn) is an atom. A literal L is either positive literal A or negative
literal ¬A where A is an atom, and ¬ denotes the negation. A (full) clause is a
formula of the form Γ → ∆, where Γ and ∆ are two sets of atoms representing
respectively the negative literals (or the antecedent), and the positive literals
(or the succedent) of the clause. For example, the set of literals of the clause
C = A1, . . . , Am → B1, . . . , Bn is {¬A1, . . . ,¬Am, B1, . . . , Nn}. A clause Γ → ∆
is Horn when ∆ is a singleton or empty. A clause Γ → ∆ is unit when it has
only one literal, i.e. either Γ is a singleton and ∆ = ∅, or Γ = ∅ and ∆ is a
singleton. A clause Γ → ∆ is positive when Γ = ∅ and is negative when ∆ = ∅.
We will write Γ1, Γ2 to indicate the union of sets and usually omit braces. If C
is a clause, by ¬C we denote the set of unit clauses ¬L, with L a literal in C, for
example, ¬C = {A1, . . . , Am,¬B1, . . . ,¬Bn} for C = A1, . . . , Am → B1, . . . , Bn.

Substitutions and unifiers. A substitution is a partial mapping from X to
T (F ,X) such that no variable in its domain occurs in its range; It is said to be
ground if its range is included in T (F). If M is an expression (i.e. a term, an
atom, a clause, or a set of such objects), and σ is a substitution, then Mσ is
obtained by applying σ to M as usually defined; We say that Mσ is an instance
of M , and if σ is ground we say that Mσ is a ground instance of M. We recall
that an expression M is ground if it does not contain variables. We refer the
reader to [3] for more details.

A substitution σ is a unifier of two terms or atoms e1, e2 whenever e1σ = e2σ.
We denote Unif(e1, e2) the set of unifiers of the two expressions e1 and e2. We
say that a substitution σ is more general than a substitution τ if there exists a
substitution θ such that σθ = τ , and we note σ ≤ τ . Equivalent substitutions,
i.e. substitutions σ and τ such that σ ≤ τ and τ ≤ σ are said to be equal up
to renaming since in that case the substitution θ is a bijective mapping from
variables to variables. It is well-known that whenever the set Unif(e1, e2) is not
empty it has a unique minimal element up to renaming, called the most general
unifier of e1 and e2, and denoted mgu(e1, e2).

Orderings. Let E be a set of elements and let � be an ordering on E, � is
well-founded if there is no infinite descending chain e � e1 � . . . for any ele-
ment e ∈ E; is monotone if e � e′ implies eσ � e′σ for any elements e, e′ ∈ E
and any substitution σ; stable if e � e′ implies u[e] � u[e′] for any elements

51

u, e, e′ ∈ E, and u[e] means that u contains e as sub-element; subterm if e[e′] � e′
for any elements e, e′ ∈ E; complete if it is total over ground elements of E;
and simplification ordering if it is well-founded, monotone, stable, and subterm.
We define an atom ordering ≺a (respectively term ordering ≺a) to be an arbi-
trary ordering on atoms (respectively on terms). An atom ordering ≺a is said
to be compatible with a term ordering ≺t if it satisfies the following condition:
p(t1, . . . , tk)≺aq(s1, . . . , sn) if and only if for any j with 1 ≤ j ≤ n there exists
an i with 1 ≤ i ≤ k such that ti≺tsj . We remark that any ordering � on a set of
elements E can be extended to an ordering �set on finite sets over E as follows:
if η1 and η2 are two finite sets over E, we have η1 �set η2 if (i) η1 6= η2 and (ii)
whenever for every e ∈ η2 \ η1 then there is e′ ∈ η1 \ η2 such that e′ � e; We also
remark that the set ordering extension of a complete (respectively well-founded)
ordering is also complete (respectively well-founded) [11]. Now, we extend the
atom ordering on clauses; To this end, we identify clauses by the sets of their
respective atoms, and we pre-order clauses with respect to the order on the sets
of their respective atoms. For example the clauses A1, A2 → B and A1 → B are
identified respectively by the two sets of atoms {A1, A2, B} and {A1, B}; The
second set is strictly smaller than the first one with respect to the set ordering
extension of ≺a, and hence the second clause is strictly smaller than the first
one. We refer reader to [11] (Chapter 6) for more details. We remark that the
ordering we define on clauses is crucial for our decidability proof for the ground
entailment problem. We show in the next Lemma some properties on term and
atom orderings.

Lemma 1. Let ≺t be a complete simplification ordering over terms, and let ≺a
be a complete atom ordering compatible with ≺t. Then ≺a is: (1) well-founded,
(2) monotone, and (3) B ≺a A implies Var(B) ⊆ Var(A).

Proof. 1. Let us prove that ≺a is well-founded by contradiction. Assume that
≺a is not well-founded. By definition, there is an infinite descending chain of
atoms A0≺aA1≺a By the compatibility of ≺a with ≺t, we deduce that
there is an infinite descending chain of terms t0≺tt1≺t . . . where ti is a term
of the atom Ai. That implies ≺t is not well-founded which contradicts the
fact that ≺t is a complete simplification ordering.

2. Let A, B be two atoms such that B ≺a A. Suppose that A = I(t1, . . . , tn)
and B = I ′(s1, . . . , sm). By the compatibility of ≺a with ≺t, for all
i ∈ {1, . . . ,m}, there is j ∈ {1, . . . , n} such that si ≺t tj , and then, by
monotonicity of ≺t, siσ ≺t tjσ for any substitution σ. Again by the com-
patibility of ≺a with ≺t, we deduce that Bσ ≺a Aσ for any σ and then the
monotonicity of ≺a.

3. Let A, B be two atoms such that B ≺a A. By the compatibility of ≺a
with ≺t, each term in B is smaller than a term in A for the ordering ≺t
and as V ar(t) ⊆ V ar(t′) for all terms t, t′ and t ≺t t′, we deduce that
V ar(B) ⊆ V ar(A).

52

In the remainder of this paper, we assume only that the atom ordering
≺a is monotone, well-founded, and is such that B ≺a A implies Var(B) ⊆
Var(A) for every atoms A,B.

2.2 Ordered resolution

The resolution is one of the most successful methods for automated proof search,
it was developed by Robinson [17]. After that, several resolution strategies have
been proposed in the literature that limit the possible inferences, and these
proposed strategies are still complete for refutation and correct. A complete
presentation on resolution and its different strategies can be found in [2]. In this
paper, we will use the ordered resolution that we briefly present next.

The ordered resolution is described by the ordered factoring inference rule
and the ordered resolution inference rule, which are given below:
Ordered factoring rule:

Γ → ∆,A,A′

(Γ → ∆,A)σ
σ = mgu(A,A′)

where Aσ is strictly maximal with respect to Γσ, and maximal
with respect to ∆σ.

We will distinguish here between two types of ordered resolution inference rules:
the a posteriori ordered resolution and the a priori ordered resolution inference
rules.
A posteriori ordered resolution rule:

Γ → ∆,A A′, Γ ′ → ∆′

(Γ, Γ ′ → ∆,∆′)σ
σ = mgu(A,A′)

where Aσ is strictly maximal with respect to Γσ, ∆σ and Aσ is
maximal with respect to Γ ′σ, ∆′σ.

A priori ordered resolution inference rule:

Γ → ∆,A A′, Γ ′ → ∆′

(Γ, Γ ′ → ∆,∆′)σ
σ = mgu(A,A′)

where A is strictly maximal with respect to Γ, ∆ and A′ is
maximal with respect to Γ ′, ∆′.

We remark that the two previous inference rules coincide on ground clauses. It
has been remarked [7] that on non-ground clauses there were inferences possible
in a priori ordered resolution but impossible in the a posteriori version, and
hence, the termination of the saturation when considering a posteriori ordered
resolution does not implies its termination when considering the a priori version.
We prove in Lemma 4 that such problematic cases are eliminated and that thanks
to the notion of redundancy we employ. We also remark that both versions of
ordered resolution are complete and sound [11].

53

Ground entailment problem.
Given a set of clauses S, the ground entailment problem for S is defined as
follows:
Input : a ground clause C
Output : entailed if and only if S |= C (i.e. C is true in every model of S).

The main contribution of this paper is a new decidability result for the
ground entailment problem. This result can be stated by the following theorem:

Theorem 1. Let ≺a be a well-founded, monotone atom ordering such
that A≺aB implies Var(A) ⊆ Var(B) for every atoms A and B. Let S be a set
of clauses, and assume that saturation on S terminates using the atom ordering
≺a. Then the ground entailment problem for S is decidable.

The rest of this paper is devoted to this result.

3 Decidability Result

We introduce in this section our saturation algorithm, our notion of redundancy,
and then give our decidability result.

Definition 1. (Rewriting systems on atoms) A rewriting system R on atoms
based on ≺a is a set of pairs (L,R) where L and R are two atoms with R≺aL.
Each pair (L,R) is called a rewriting rule and is denoted L→ R.

We remark that rewriting systems on atoms behave as rewriting systems on
terms. Let R be a rewriting system on atoms, A →R B means that the atom
A rewrites to the atom B by R. Let A be an atom, we denote A ↓R the set
of atoms reachable from A when applying rules in R, this notion is extended
to sets of atoms in a traditional way. We let A ↓−R be the set A ↓R \{A}. We
denote A ≺R B whenever A ∈ B ↓−R. By definition of →R, ≺a and ≺R, it is
easy to see that A ≺R B implies A ≺a B, and A→R B implies B≺aA for every
atoms A and B.

Lemma 2. If R is a finite rewriting system on atoms based on ≺a then for
every ground atom C the set C ↓R is finite.

Proof. Consider the (infinite) directed graph whose vertices are ground atoms,
and there is an edge from A to B whenever A →R B. First we note that since
in every rewrite rule L → R we have Var(R) ⊆ Var(L) then for every atom A
there is most |R| successors. Second we note that A→R B implies B≺aA, and
thus this graph is acyclic. Also, the fact that ≺a is well-founded implies that this
graph does not contain any infinite path. Consider its (potentially infinite) tree
build from the vertice C by considering the possible paths to all other nodes. We
note that this tree is of finite branching and every path in it is finite. Thus by
König’s lemma this graph has only a finite number of vertices. Since all atoms
in C ↓R must be by definition vertices in this tree, we have that C ↓R is finite.

54

Definition 2. (Rewriting system based on a set of clauses) Let S be a finite set
of clauses. The rewriting system R(S) based on S is a rewriting system on atoms
defined as the set of all rewriting rules L → R such that there exists a clause
C ∈ S with: (1) L,R are two distinct atoms of C, and (2) R≺aL.

First let us remark that since S is finite we also have that R(S) is finite. We
also remark that if S ⊆ S′, then R(S) ⊆ R(S′).

Definition 3. (Local DAG proofs) Let S be a set of clauses, C be a clause and
A be a set of ground atoms. We say that C is a A-local DAG proof of S, and
we write S `A C, whenever there exists a set T of ground clauses and a well-
founded partial ordering <T on T such that (1) for any clause t ∈ T , we have
either t is a ground instance of a clause in S ∪ ¬C, or there exists t1, t2 ∈ T
with t1, t2 <T t and t1, t2 t is an instance of resolution inference rule; (2) T
contains the empty clause; and (3) for every atom A ∈ T we have A ∈ A.

The ordering <T is not to be confused with an ordering on clauses; It is the
ordering on the nodes of a proof tree in DAG representation. Now, we can
deduce the following lemma.

Lemma 3. The problem consisting in determining, given a finite set S of
clauses, a ground clause C and a finite rewriting system on atoms R, whether
S `C↓R C is decidable.

Proof. It suffices to remark that, seeing that C ↓R is finite by Lemma 2, the set
of all instances of clauses in S with atoms occurring in C ↓R is finite.

Definition 4. Given a set of clauses S and a clause C. The notation σS,C
means that σ is a substitution grounding of C for S, that is σ is a substitution
satisfying the following: (1) the domain of σ is the set of variables occurring in
C; and (2) σ is injective and maps each variable x to a constant cx that does
not occur in S or C.

Definition 5. (Redundancy) Let R be a finite rewriting system on atoms.

– A ground clause C is R-redundant in a set of clauses S if S `C↓R C.
– A non-ground clause C is R-redundant in a set of clauses S if all its ground

instances are R-redundant in S;
– An inference C ′, C” C by ordered resolution is R-redundant in the set of

clauses S if either C ′ or C” is R-redundant in S or S `CσS,C↓R∪AσS,C↓−R
CσS,C , with Aσ the resolved atom.

We remark that if an inference by ordered resolution is redundant with respect
to the notion of redundancy given in [3] then it is also redundant with respect to
our notion of redundancy. Using this notion of redundancy, we show next how
to relate a priori and a posteriori ordered resolution inference rules.

Lemma 4. Let C1, C2 be two clauses and let C1, C2 C be an inference by a
priori ordered resolution with Aσ the resolved atom. Let R = R(C1σ)∪R(C2σ).
Then either this inference is R-redundant or is an inference by a posteriori
ordered resolution.

55

Proof. Assume this is not an inference for a posteriori ordered resolution. Then
the resolved atom Aσ is not maximal for ≺a in the set of atoms of C. Thus
there exists in C1 or C2 an atom B with Aσ≺aBσ. By definition we thus have
Bσ → Aσ ∈ R. As a consequence, all the atoms in C1σ,C2σ are in C ↓R, and
hence, every atom in C1σ,C2σ is smaller than an atom in C with respect to the
atom ordering ≺a. By definition this inference is R-redundant in {C1, C2}.

We define next our notion of saturation for ordered resolution.

Definition 6. (Saturated sets of clauses) Let R be a rewriting system on atoms.
We say that a set S of clauses is R-saturated up to redundancy under ordered
resolution, if: (1) any inference by ordered resolution from premises in S is R-
redundant in S; (2) R(S) ⊆ R; and (3) for each a priori ordered resolution
inference C1, C2 C with C1, C2 ∈ S, if the resolved atom Aσ is not maximal
in C1σ,C2σ then R(C1σ,C2σ) ⊆ R.

3.1 Saturation

We present now a procedure that, providing it terminates, constructs from a
finite set S of clauses the pair (S′,R) such that: (1) : S′ is a finite set of clauses;
(2) : R is a rewriting system on atoms; and (3) : for every ground clause C, we
have S |= C iff C is a C ↓R-local DAG proof of S′ (i.e. S′ `C↓R C).

Saturation procedure.

Input:
A finite set S of clauses.

Initialisation:
Let (S1,R1) = (S,R(S)), and i = 1.

Transformation step.
We construct the couple (Si+1,Ri+1) from the couple (Si,Ri) as follows:
Let C1, C2 → C be an inference by ordered resolution with C1, C2 ∈ Si, and
Aσ the resolved atom; One of the following three cases will be applied:
– Non-maximality: If Aσ is not maximal for ≺a in the atoms of C1σ,C2σ

then Si+1 = Si, Ri+1 = Ri ∪R({C1σ,C2σ}), and i = i+ 1;
– Redundancy: Otherwise, if Si `C↓Ri C, then Si+1 = Si, Ri+1 = Ri, and
i = i+ 1;

– Discovery: Otherwise a new clause useful for establishing local proofs
has been discovered, and hence Si+1 = Si ∪ {C}, Ri+1 = Ri ∪ R(C),
and i = i+ 1.

Iteration
We repeat the Transformation step until a fixed point is reached.

We remark that a sequence of Transformation steps in the previous procedure
is fair if every possible inference by a priori ordered resolution is eventually
performed [2].

56

Definition 7. (Output of the saturation procedure) Given a finite set S of
clauses and an atom ordering ≺a, Sat≺a(S) denotes the pair (S′,R) obtained
by a fair sequence of Transformation steps by the saturation procedure in case it
terminates.

We prove next that the saturation procedure actually constructs a saturated set
of clauses.

Proposition 1. Let S be a finite set of clauses and ≺a be a monotone, well-
founded atom ordering such that A≺aB implies Var(A) ⊆ Var(B) for ev-
ery atoms A and B. If the saturation procedure terminates on S and outputs
Sat≺a(S) = (S′,R) then S′ is R-saturated.

Proof. Assume that there exists two clauses C1, C2 ∈ S′ such that the infer-
ence by ordered resolution C1, C2 C is not R-redundant. In the saturation
algorithm it thus falls into the case non-maximality or the case discovery.

non-maximality: Assume that the resolved atom Aσ is not maximal in the
atoms of C1σ,C2σ. Then this inference is not an inference by a posteriori
ordered resolution. It is thus R(C1σ) ∪ R(C2σ)-redundant. Since it is not
redundant we must have R(C1σ) ∪ R(C2σ) 6⊆ R. This implies that (S′,R)
is not a result of the saturation algorithm.

discovery: If (S′,R) is a result of the saturation algorithm we would have
C ∈ S′, then it is trivial that the inference is redundant in S′.

As a consequence every inference between two clauses of S′ must be R-
redundant, and thus the set S′ is R-saturated by Definition 6.

3.2 Decidability of the ground entailment problem

We consider in this section an R-saturated set S of clauses.

Proposition 2. Let S be an R-saturated set of clauses, and C be a ground
clause. We have that S |= C implies S `C↓R C

Proof. Assume that S |= C, and let T be the set of ground DAG proofs of
S ∪ ¬C that contain the empty clause. By completeness of resolution we know
that T 6= ∅. For each set of atoms A let TA be the set of DAG proofs T such that
T ↓R \ atoms(C) ↓R= A and let Amin be minimal such that TAmin is not empty.
If Amin is empty then we are done as each T ∈ TAmin is then a DAG proof of
S ∪¬C in which all atoms are in C ↓R and that contains the empty clause, and
thus S `↓R C. Otherwise let us derive a contradiction. For any T ∈ TAmin the
set of atoms in T is finite and therefore T↓R is also finite by Lemma 2. Thus we
can consider a maximal element A in Amin (the same for all T in TAmin). Since
A is maximal we also have that A is an atom occurring in T for each T ∈ TAmin .

57

claim For any T ∈ TAmin the atom A is maximal in atoms(T) for the ordering
≺R.

Proof of the claim. By contradiction if this were not the case there would exist
B ∈ T with A ≺R B. Since A is maximal in Amin we would have that B is
not in this set. Since B ∈ T this would imply B ∈ C ↓R, which implies that
A ∈ C ↓R, which would contradict A ∈ T ↓R \C ↓R.

Let T be in TAmin , and let Leaves+
A be the set of minimal clauses (for <T)

that contain the atom A, and Leaves−A be the subset of minimal clauses (for
<T) that do not contain A. Since T is a DAG proof of Leaves+

A ∪ Leaves−A that
contains the empty clause, the correctness of resolution implies that the set of
clauses Leaves+

A ∪ Leaves−A is unsatisfiable. Let us consider the set Leaves′ of all
possible conclusions of resolution on A between clauses in Leaves+

A. The set of
ground clauses Leaves′ ∪ Leaves−A is also unsatisfiable.

claim Each clause CA ∈ Leaves+
A is an instance with a substitution σ of a clause

CsA ∈ S that has a maximal atom As for ≺a with Asσ = A.

Proof of the claim. By definition of DAG proofs the minimality for <T0 of CA
implies that CA is either an instance of a clause in S or of a clause in ¬C.
Since A is not an atom occurring in C the later case is excluded. Thus there
exists CsA ∈ S, an atom As ∈ CsA, and a substitution σ such that Asσ = A and
CsAσ = CA. Finally if As is not maximal for ≺a in CsA then it is not maximal
for ≺R and thus A cannot be maximal for ≺R in the atoms of CA. This would
contradict the fact that A is maximal for ≺R among the atoms occurring in
T .

Thus every resolution on A between clauses in Leaves+
A is an instance with

substitution σ of an a priori ordered resolution inference between two clauses
C1 and C2 of S. Let C3 ∈ Leaves′ be its conclusion. Since S is R-saturated each
such inference is redundant. We note that A maximal in atoms(T) for ≺R and
the fact that S is saturated (second point of the ordering condition) for R imply
that A cannot be smaller for ≺R than an atom in C3. Thus for each conclusion
C3 we can define a set S(C3) which is either:

– the singleton {C3} if C3 is an instance of a clause Cg3 ∈ S;
– or a set SgC3

of instances of clauses of S whose atoms are in C3 ↓R ∪A ↓−R
that entails C3

The set of ground clauses Sg = Leaves−A ∪
⋃
C3∈Leaves′ S(C3) is unsatisfiable. By

completeness of resolution there exists a DAG proof Tm of Sg that contains the
empty clause. By construction we have Tm ↓R⊆ (atoms(T) \ {A}) ↓R ∪A ↓−R.
Since A is maximal in atoms(T) for ≺R and A is not in C ↓R this implies that
Tm ↓R \C ↓R ≺aT ↓R \C ↓R. This contradicts the fact that Amin is minimal
such that TAmin is not empty.

We note that S `C↓R C trivially implies S |= C by correctness of resolution.
As a consequence of Lemma 3 and of Proposition 2 we thus have the following
proposition.

58

Proposition 3. If S is an R-saturated set of clauses then the ground entailment
problem for S is decidable.

The main theorem of this paper is a self-contained re-formulation of the above
proposition using the initial set of clauses.

Theorem 1. Let ≺a be a well-founded, monotone atom ordering such that
A≺aB implies Var(A) ⊆ Var(B) for every atoms A and B. Let S be a set
of clauses, and assume that saturation on S terminates using the atom ordering
≺a. Then the ground entailment problem for S is decidable.

4 Applications: From cryptographic protocols to logic of
clauses

Cryptographic protocols are programs designed to ensure secure electronic com-
munications between participants using an insecure network, they use crypto-
graphic primitives to obtain the basic building bricks. However, even if these
bricks are secure, the way they are combined in the protocol is very important.
Indeed, several protocols which were believed to be correct were late found to
have attacks; The most relevant example is the bug, man-in-the-middle attack,
of the Needham-Schroeder public key protocol [13] found 17 years after the pub-
lication of the protocol. This situation shows that one actually needs to formally
verify the protocols.

Among several methods proposed in the literature to analyse security proto-
cols, for instance the methods that use theorem provers, or process algebra, or
tree automata, there is a method that uses clauses and Horn clauses to analyse
protocols. This method has been widely studied in the literature, and several
models and decidability results have been given [6, 5, 18]. In the most common
models of the last method, intruder behaviour, protocol description and secu-
rity properties are encoded as Horn clauses; And, the insecurity problem of the
protocol, i.e. the problem that inputs a protocol and a security property and
outputs yes when the protocol does not preserve the property, is reduced to the
satisfiability problem for a class of Horn clauses.

In this section, we present a new model based on the use of clauses and Horn
clauses to analyse cryptographic protocols, and hence show how to apply the
decidability result obtained in Section 3 to the analysis of protocols.

4.1 The model

Now, we present our model to analyse security protocols using Horn clauses. We
remark that Horn Clauses, and not full clauses, are sufficient to analyse security
protocols, and that we actually need one unary predicate symbol, let I be this
symbol.

59

Intruder clauses. We show now how to represent the intruder behaviour by
Horn clauses. Let I be an intruder and let LI be its deduction system (LI
represents the intruder capacities). LI is a set of rules of the form u1, . . . , un → v
where u1, . . . , vn, v are terms in T (F ,X). We recall that the rule u1, . . . , un →
v ∈ LI means that the intruder is able to construct the term v if he knows the
terms u1, . . . , un. The set of clauses associated to I is

CI
def
= {I(u1), . . . , I(un)→ I(v) such that u1, . . . , un → v ∈ LI}

For example, the clause I(x), I(y) → I({x}sy) represents the capacity of the
intruder to compute the symmetric encryption of a term t using a key k is he
knows t and k.

Insecurity problem of cryptographic protocols. We show here how we
analyse security protocols using Horn clauses. In [6, 5, 18], the rules describing
the protocol, and the security properties are encoded by Horn clauses, and the
insecurity problem of the protocol is reduced to the satisfiability problem for a
class of Horn clauses. Our model differs from the previous models by the fact
that we do not encode neither protocol description rules, nor security properties
by Horn clauses. Actually, we reduce the insecurity problem of protocols to the
ground entailment problem using two steps instead of one step:

– First, following the approach based on the resolution of constraint systems
to analyse protocols, which is widely studied in the literature [12], we reduce
the insecurity problem to the intruder reachability problem;

– An then, we reduce the intruder reachability problem to the ground entail-
ment problem.

We will describe next our method, and we recall that we are concerned only by
the secrecy property, protocols with bounded number of sessions, and passive
intruder.

Constraint systems are quite common in modelling cryptographic protocols
for a bounded number of sessions [12]. Actually, many protocol security prop-
erties can be characterised as reachability problems which are converted to con-
straint solving problems. In this approach, a constraint system is built from each
execution of the protocol, and we say that an execution is not secure (or does
not preserve the secrecy) if the corresponding constraint system is satisfiable
modulo the intruder deduction system. And hence, the insecurity problem of
the protocol can be reduced to the satisfiability problem of constraint systems
modulo the intruder deduction system, which is also called intruder reachability
problem. Since the intruder is passive, the constraint systems corresponding to
the executions, the satisfiability problem, and the intruder reachability problem
are actually ground.

As shown in the previous paragraph, the intruder capacities are represented
by a set of Horn clauses. We also represent the initial knowledge of the intruder,
denoted IK, by a set of clauses CIK : CIK = {I(m) such that m ∈ IK}. For
instance the set of clauses CIK = {I(a), I(Pka)} means that the intruder knows

60

the messages a, Pka. Now we show how we reduce the intruder ground reacha-
bility problem to the ground entailment problem.

Let the ground constraint system C = (E1 B t1, . . . , En B tn) where Ei =
{ei1, . . . , ein}, ti, eij are terms in T (F). For each constraint Ei B ti ∈ C, we as-
sociate the following Horn clause CEi → I(ti) where CEi = {I(ei1), . . . , I(ein)}.
For example, the clause I(a), I(b) → I(< a, b >) corresponds to the constraint
{a, b} B < a, b >. The constraint system C will then be associated to the set
of ground Horn clauses CC = {CE1 → I(t1), . . . , CEn → I(tn)}. It is easy to
see that C is satisfiable if and only if CC is entailed by CI . Thus, an execution
exec does not preserve the secrecy if and only if the set of Horn clauses CCexec is
entailed by the set of Horn clauses CI . Finally, we conclude that in presence of
passive intruder, each execution of the protocol is associated to a ground con-
straint system, and then, the insecurity problem of an execution and hence of
a cryptographic protocol under a bounded number of sessions is reduced to the
ground entailment problem for CI .

4.2 Example: Needham-Schroeder symmetric key protocol

Presentation of the protocol. We consider the Needham-Schroeder symmet-
ric key protocol [13] as an example. This protocol intends to permit Alice to
establish a shared key (session key) with Bob and to obtain mutual conviction
of the possession of the key by each other. The session key is created by a trusted
server which shares a secret key with each party. The protocol can be described
as follows:

PNS :

1 A⇒ S : A,B,NA
2 S ⇒ A : {NA, B,KAB , {KAB , A}sKBS}

s
KAS

3 A⇒ B : {KAB , A}sKBS
4 B ⇒ A : {NB}sKAB
5 A⇒ B : {NB − 1}sKAB

NA (respectively NB) represents the nonce freshly created by A (respectively B),
KAS (respectively KBS) represents the secret key shared between A (respectively B)

and the trusted server, and KAB the session key shared between A and B. The
functions symbols {−}s−, {−}−1s

− denotes respectively the symmetric encryption and
symmetric decryption.

In this protocol, we have three roles, the trusted server, Alice and Bob. In
the same spirit as in [11], we describe the role server by the following rule:
S1 :

v1 ⇒ {π2(π2(v1)), π1(π2(v1)),Kπ1(v1)π1(π2(v1)), {Kπ1(v1)π1(π2(v1)), π1(v1)}sKπ1(π2(v1))S
}sKπ1(v1)S

;

v1
?= X1, Y1, Z1

61

The role Alice by the following set of rules:

A1 : ∅ ⇒ A,X2, NA; ∅
A2 : v2 ⇒ π2(π2(π2({v2}−1s

KAS
))); v2

?= {NA, X2, Y2, Z2}sKAS
A3 : v3 ⇒ {{v3}−1s

π1(π2(π2({v2}−1s
KAS

)))
− 1}s

π1(π2(π2({v2}−1s
KAS

)))
;

v3
?= {X ′2}sπ1(π2(π2({v2}−1s

KAS
)))

And the role Bob by the following set of rules:

B1 : v4 ⇒ {NB}sπ1({v4}−1s
KBS

)
; v4

?= {X3, Y3}sKBS
B2 : v5 ⇒ ∅; v5

?= {NB − 1}s
π1({v4}−1s

KBS
)

Attack on the protocol. Many attacks have been discovered on this protocol,
Denning and Sacco [8] considered that communication keys may be compro-
mised, and showed that the protocol is vulnerable to replay attack. Here we
concentrate on the key exchange goal rather than on the authentication of the
two parties. The key exchange goal can be expressed by the secrecy of the nonce
NB . Intuitively, if NB remains secret than the key KAB has also been kept se-
cret. We will present the attack discovered by Pereira and Quisquater [16], this
attack described in Figure 1 allows, as we will see below, the intruder to break
the secrecy of NB . This attack is possible if the encryption scheme used in the
implementation of the protocol is used in the cipher-block-chaining (CBC) mode.
In the case of CBC encryption, the intruder may be able to get from any en-
crypted message the encryption of any of its prefixes, and that without knowing
the encryption key: from the message {< x, y >}sz, the intruder can deduce the
message {x}sz. This property, called prefix property, is encoded by the deduction
rule

{< x, y >}sz → {x}sz
and hence by the clause

Cpre = I({< x, y >}sz)→ I({x}sz)

In a first session (1), the intruder can listen to the message
{NA, B,KAB , {KAB , A}sKBS}KAS and then, using the prefix property, computes
the message {NA, B}KAS . This message is of the form Alice might expect to
receive as third message of a later session of the protocol where Bob is considered
to play initiator’s role. Then once the message {NA, B}sKAS computed, the
intruder starts another session of the protocol by sending to Alice the message
{NA, B}KAS . Alice thinks that Bob has started a session (2) with her and
thus, Alice can be fooled into accepting the publicly known NA as a secret key
shared with Bob. Let us consider an instance of the protocol PNS where Alice
instantiates once the role A and once the role B, Bob instantiates only once the
role B and the agent s instantiates only once the role S, Kbs denotes the secret

62

(1).1 A⇒ S : A, B, NA

(1).2 S ⇒ A : {NA, B, KAB , {KAB , A}sKBS}KAS
(2).3 I(B)⇒ A : {NA, B}KAS
(2).4 A⇒ I(B) : {N ′A}NA

Fig. 1. Attack on the Needham-Schroeder protocol

key shared between Bob and s, and Kas denotes the secret key shared between
Alice and s.

The attack described above is a possible execution of this instance of PNS .
This execution is given by the set of rules {A1(Alice), S1(s), B1(Alice)}. At the
end of this execution, the intruder breaks the secrecy of the nonce n′a. This
execution is then given by the following set of rules:

∅ ⇒ Alice,Bob, na

v1 ⇒ {na, Bob,Kab, {Kab, Alice}sKbs}Kas ; v1
?= Alice,Bob, na

v2 ⇒ {n′a}na ; v2
?= {na, Bob}Kas

We associate to this execution the ground constraint system C, C =
(E1 B Alice, E1 B Bob,E1 B na, E1 ∪ {na, Bob,Kab, {Kab, Alice}sKbs}

s
Kas
B

{na, Bob}sKas , E1 ∪ {na, Bob,Kab, {Kab, Alice}sKbs}
s
Kas
∪ {n′a}sna B n′a) and E1

is the initial knowledge of the intruder, E1 = {Alice,Bob, s,Kis, na}.
We associate to this ground constraint system the following set of clauses CC:

CE1 → I(Alice)
CE1 → I(Bob)
CE1 → I(na)
CE1 ∪ I({na, Bob,Kab, {Kab, Alice}Kbs}sKas)→ I({na, Bob}sKas)
CE1 ∪ I({na, Bob,Kab, {Kab, Alice}sKbs}

s
Kas

) ∪ I({n′a}sna)→ I(n′a)

where CE1 = {I(Alice), I(Bob), I(s), I(Kis), I(na)}. It is easy to see that CC is
entailed by CI where CI = CDY ∪ Cpre, and CDY denotes the set of clauses
representing the Dolev-Yao intruder system with explicit destructors.

5 Conclusion

We have presented in this paper an extension of the result of Basin and Ganzinger.
Such extension may lead to a further extension for resolution modulo an equational
theory [10, 15, 19]. We believe that the technique employed can be extended to add
reflexivity or transitivity axiom to an already saturated theory, and that a consequence
of our proof is that saturated theories are complete for contextual deduction [4, 14],
which may help in the resolution of [9]. Another contribution of this paper is the
reduction of the insecurity problem of cryptographic protocols to a ground entailment
problem in the first order logic. While the application on protocols is limited to search
of proofs, we believe that this application can be extended to proof of correctness, and
that by including the clauses describing the protocol to the set of clauses. We believe
also that one can apply this result to analyse control access policies.

63

References

1. Leo Bachmair and Harald Ganzinger. Completion of first-order clauses with equal-
ity by strict superposition (extended abstract). In CTRS, volume 516 of Lecture
Notes in Computer Science, pages 162–180, 1991.

2. Leo Bachmair and Harald Ganzinger. Resolution theorem proving. In John Alan
Robinson and Andrei Voronkov, editors, Handbook of Automated Reasoning, pages
19–99. Elsevier and MIT Press, 2001.

3. David Basin and Harald Ganzinger. Automated complexity analysis based on
ordered resolution. J. ACM, 48(1):70–109, 2001.

4. Francois Bronsard and Uday S. Reddy. Conditional rewriting in focus. In
M. Okada, editor, Proceedings of the Second International Workshop on Condi-
tional and Typed Rewriting Systems, volume 516 of Lecture Notes in Computer
Science. Springer-Verlag, 1991.

5. H. Comon-Lundh and V. Cortier. Security properties: Two agents are sufficient.
In ESOP, pages 99–113, 2003.

6. H. Comon-Lundh and V. Cortier. New decidability results for fragments of first-
order logic and application to cryptographic protocols. In R. Nieuwenhuis editor,
RTA, volume 2709 of Lecture Notes in Computer Science, pages 148–164, Springer,
2003.

7. Hans de Nivelle. Using resolution as a decision procedure. Habilitation Thesis,
available at http://www.ii.uni.wroc.pl/~nivelle/publications/index.html,
2006.

8. D. E. Denning and G. M. Sacco. Timestamps in key distribution protocols. Com-
mun. ACM, 24(8):533–536, 1981.

9. Nachum Dershowitz and Ralf Treinen. Rta list of open problems, problem 37. http:
//rtaloop.mancoosi.univ-paris-diderot.fr/problems/summary.html, 1998.

10. Gérard Huet. Constrained Resolution: A Complete Method for Higher Order Logic.
PhD thesis, Case Western Reserve University, 1972.

11. Mounira Kourjieh. Logical analysis and verification of cryptographic protocols. PhD
thesis, Université Paul Sabatier Toulouse 3, dec 2009.

12. J. K. Millen and V. Shmatikov. Constraint solving for bounded-process crypto-
graphic protocol analysis. In ACM Conference on Computer and Communications
Security, pages 166–175, 2001.

13. R. M. Needham and M. D. Schroeder. Using encryption for authentication in large
networks of computers. Commun. ACM, 21(12):993–999, 1978.

14. Robert Nieuwenhuis and Fernando Orejas. Clausal rewriting. In CTRS, pages
246–258, 1990.

15. Robert Nieuwenhuis and Albert Rubio. Ac-superposition with constraints: No
ac-unifiers needed. In CADE, pages 545–559, 1994.

16. O. Pereira and J.J. Quisquater. On the perfect encryption assumption. Proc. of
the 1st Workshop on Issues in the Theory of Security (WITS’00), pages 42–45,
Geneva (Switzerland), 2000.

17. John Alan Robinson. A machine-oriented logic based on the resolution principle.
J. ACM, 12(1):23–41, 1965.

18. H. Lin S. Delaune and Ch. Lynch. Protocol verification via rigid/flexible resolution.
In N. Dershowitz and A. Voronkov, editors, LPAR, volume 4790 of Lecture Notes
in Computer Science, pages 242–256. Springer, 2007.

19. Laurent Vigneron. Associative-commutative deduction with constraints. volume
814 of Lecture Notes in Computer Science, pages 530–544, 1994.

64

Obligations with deadlines: a formalization in
Dynamic Deontic Logic

Robert Demolombe1

Institut de Recherche en Informatique de Toulouse
France

robert.demolombe@orange.fr

Abstract. Segerberg’s Dynamic Deontic Logic is a dynamic logic where
among the set of all possible histories those fulfilling the norms are dis-
tinguished. An extension of this logic to obligations (respectively permis-
sions and prohibitions) to do an action before a given deadline or during
a given time interval is defined. These temporal constraints are defined
by events which may have several occurrences (like the obligation to up-
date a given file before midnight). Violations of these kinds of norms are
defined in this logical framework.

1 Introduction

An important issue in computer security is to have clear definitions of the norms
which are intended to influence the behavior of interacting agents (human agents
and software agents).

One of the most significant concepts involved in these norms is the concept
of obligation and the related concepts of prohibition and permission.

For instance, in the context of data management an information system user
may have the right to access his private data in order to check its validity. That
means that, by performing some request, he can create the obligation to the
information system to deliver these data. However, this kind of obligation is
not completely defined if we do not specify a deadline to fulfill this obligation.
Indeed, without specification of this deadline it is impossible at a given moment
to check whether the obligation has been violated. Moreover, it is worth noting
that the definition of the deadline may be more complex than, for instance, a
fixed number of days. It may be something like: data must be delivered before
the end of the month where the request has occurred.

In other contexts deadlines may be involved in the definitions of prohibitions.
For instance, it may be prohibited to disseminate contractors’ names before a
contract has been signed.

There are many papers in the literature about the formalization of regula-
tions, or norms in general [2, 18, 11]. Some of them have a static point of view
and investigate properties (for instance, the obligation for a car driver to have
a licence) that ought to be fulfilled in a given fixed situation. They are usually
called “obligations to be”. Others have a dynamic point of view. According to

65

that point of view it is important not to confuse obligation change [10, 8] on the
one hand, and obligations to change a situation, that is obligations to do some
actions, on the other hand. The latter are usually called “obligations to do”.

Obligations to do combine deontic logic and dynamic logic, and there are
several proposals for their formalization in the framework of modal logics [21,
23, 17, 12]. However, as far as we know, Dignum et al., in [15, 14, 13], and Broersen
et al., in [5, 6], are the only researchers who have taken into account the notion
of deadline.

The objective of this paper is to present new formal definitions of obligations
to do and related concepts with deadlines1. These formal definitions are needed
in the field of computer security because these concepts may be quite complex
and when a team of computer scientists has to specify pieces of software to check
norm violations they have to agree on the definitions.

For that purpose, we have adopted the formal framework that has been pro-
posed by Segerberg in [23, 22, 21, 20] for obligations to do without deadlines.
This framework is presented in section 2. Then it is extended to deadlines (these
extensions are the new contribution of the paper). We consider two cases: the
case where a deadline is specified by the occurrence of a proposition (section 3),
and the case where it is specified by two propositions defining an interval for the
performance of the action (section 4). In both cases the circumstances where the
obligations are violated are formally defined. Finally, we compare our proposal
with other similar works (section 5) and possible future research directions are
mentioned in the conclusion.

2 Segerberg’s dynamic deontic logic

Obligations to do raise a particular formalization problem with regard to obli-
gations to be. The problem comes from the fact that the formula in the scope of
an obligation, just as any formula in the scope of a modal operator, must denote
a proposition, and actions are denoted by terms, not by propositions (see [21]).
Then, the argument of an obligation to do operator cannot just be an action.

The solution proposed by Segerberg in [23, 22, 21] is to interpret an obligation
to do an action as an obligation to have done this action. Since the fact that
an action has been done is represented by a proposition, this fact can be in the
scope of an obligation operator. This fits well our intuitions: an obligation to do
an action is fulfilled when the action has been done.

The logic is defined by its semantics. The primitive notion is the notion of
point, which is similar to a possible world in a Kripke model (sometimes we
use the term “instant” to show that we are talking about the world at a given
moment). A path is a sequence of points that can be understood as a given
evolution of the world.

An event type is a finite set of paths (when there is no ambiguity we will
use the term “event”). Each path can be viewed as a particular realization of
the event type.

1 A preliminary version of this work has been presented in a short paper [9].

66

An individual action is a tuple < i, e, p >, where i denotes an agent, e an
event type and p a path in the set of paths denoted by e. Intuitively, i is the
agent who realized the event type e along the path p.

A history is a sequence of individual actions, which can be finite or infinite,
of the form:

< i0, e0, p0 >< i1, e1, p1 > . . . < in, en, pn >
where for every i in [0, n − 1], the last point of pi is the first point of pi+1. A
history with no individual action is denoted by: empty.

We say that “i does e in h”, if p is some path in e and < i, e, p > is an
individual action of the history h. That is, in formal terms: ∃h′, h′′ such that
h = h′ < i, e, p > h′′ (where h′ and h′′ may be empty).

We use the following notations:
- ef is the complex event consisting of e immediately followed by f ,
- pq is the path made up by p immediately followed by q.
We say that the histories h and h′ are equivalent, and that is denoted by

h ≈ h′, iff ∃g, g′ 2

h = g < i, e0, p0 > . . . < i, en−1, pn−1 > g′ and
h′ = g < i, e0 . . . en−1, p0 . . . pn−1 > g′

It is assumed that for any given history there is a definite set of possible con-
tinuations, where a continuation is an history. The set of complete continuations
of h is denoted by: cont(h), where a complete continuation is an infinite history.
This set represents the set of possible futures when we are at the last point of h.

It is also assumed that for every h the set cont(h) can be partitioned into
two categories: the set of continuations that conform to the Norm, denoted by
norm(h), and those that do not. A continuation conforms the Norm if none of
the obligations and none of the prohibitions are violated along this continuation.

Sometimes the histories in norm(h) are called the “ideal histories”. In formal
terms it is assumed that we have:

∀h ∃norm(h) such that norm(h) ⊆ cont(h)
If there is no dilemma inside the Norm we have:
cont(h) ̸= ∅ ⇒ norm(h) ̸= ∅

which intuitively means that there is always a future continuation where the
Norm is completely fulfilled.

The formal language is the language of a propositional multimodal logic [7]
with the following additional modal operators:

[H]ϕ: it is historically necessary that ϕ.
[D]ϕ: it is deontically necessary that ϕ.
[F]ϕ: it will always be the case that ϕ.
[P]ϕ: it always was the case that ϕ.
The intuitive distinction between the operators H and F is that [H]ϕ holds

iff ϕ holds for all the continuations of a given history, while [F]ϕ holds iff ϕ
holds at every point of a given continuation. The meaning of the operator P is
similar to that of the operator F except that it is evaluated for a past history.

2 ∃g, g′ abbreviates ∃g∃g′, and ∀g, g′ abbreviates ∀g∀g′. Also, e0 . . . en−1 and
p0 . . . pn−1 respectively abbreviate < e0, . . . , en−1 > and < p0, . . . , pn−1 >.

67

The meaning of the operator D is similar to that of the operator H except that
it is evaluated only for all the continuations that conform the Norm.

The satisfiability conditions are defined using the relation:
(h, g) |= ϕ

whose intuitive meaning is: ϕ is true at a point which is the last point of the
past history h, and the first point of the future history g.

If ϕ is an atomic formula A, we have (h, g) |= A iff the last point of h is
in the set of points that interprets A. The satisfiability conditions for logical
connectives are defined as usual. For the modal operators we have:

(h, g) |= [H]ϕ iff ∀g′ ∈ cont(h)((h, g′) |= ϕ)
(h, g) |= [D]ϕ iff ∀g′ ∈ norm(h)((h, g′) |= ϕ)
(h, g) |= [F]ϕ iff ∀g0, g1(g = g0g1 ⇒ (hg0, g1 |= ϕ)
(h, g) |= [P]ϕ iff ∀h0, h1(h = h0h1 ⇒ (h0, h1g) |= ϕ)
A formula ϕ is consistent iff there exists a set of histories such that for some

h and g in this set we have (h, g) |= ϕ.
For any modal operator [O], such that O ∈ {H,D,F, P}, the dual operator

is denoted by < O >.
Actions are represented by terms built up with atomic actions and the con-

structors of sequence and non deterministic choice which have the same meaning
as in Harel’s Dynamic Logic [16]. The constructor of sequence is denoted by ”;”
and the constructor of non deterministic choice is denoted by ”|”.

We adopt the following notations.
|α|: event type which is the interpretation of the action α.

|α1;α2|
def
= {p1p2 : p1 ∈ |α1| and p2 ∈ |α2|}

|α1|α2|
def
= {p : p ∈ |α1| or p ∈ |α2|}

For each agent i we have the event-to-proposition operators:
doesi(α) : i is just about to do α,
donei(α) : i has just finished doing α.
These operators play a fundamental role since they allow to talk about actions

in terms of propositions.
Their formal semantics is defined by:
(h, g) |= doesi(α) iff ∃g′, e, p(p ∈ e ∧ e = |α| ∧ g ≈< i, e, p > g′)
(h, g) |= donei(α) iff ∃h′, e, p(p ∈ e ∧ e = |α| ∧ h ≈ h′ < i, e, p >)
We say that: “i does α in h” iff ∃h′, h′′, e, p(p ∈ e∧e = |α|∧h ≈ h′ < i, e, p >

h′′).
Now it is possible to introduce the two operators that represent obligation

or prohibition to do an action:
obi(α) : it is obligatory for agent i to have done action α.
fbi(α) : it is forbidden for agent i to have done action α.
Their satisfiability conditions are:
(h, g) |= obi(α) iff ∀g′ ∈ cont0(h)(¬(i does α in g′) ⇒

∀f ∈ norm(hg′) (i does α in f))
(h, g) |= fbi(α) iff ∀g′ ∈ cont0(h)(∀f ∈ norm(hg′) ¬(i does α in f))

where cont0(h) denotes the set of h finite continuations and i does α in k is an
abbreviation for: ∃k1, k2(k ≈ k1k2 ∧ (k1, k2) |= doesi(α)).

68

The intuition of the definition of the operator obi(α) is that if it is not the case
that i did α along the history g′, then in all the hg′ continuations conforming the
norm the Norm i does α. The intuition of the definition of the operator fbi(α)
is that there is no continuation of the history h that conform the Norm where i
does α.

The until operator is assigned the intuitive meaning3:
(until ϕ)ψ: ψ holds from the point where we are until the point where ϕ

holds.
Its formal definition is:

(h, g) |= (until ϕ)ψ iff ∀g′, g′′(g ≈ g′g′′ ⇒
((hg′, g′′) |= ψ ∨ ∃g0, g1(g′ ≈ g0g1 ∧ (hg0, g1g

′′) |= ϕ)))
If there are several points in g where ϕ holds, (until ϕ)ψ guarantees that ψ

holds until the point that is just before the first point where ϕ holds.
If ϕ never holds in the future, it is always the case in the future that ψ holds.

Therefore we have the valid formula:
(until false)ψ ↔ [F]ψ
The operator (before ϕ)ψ is assigned the intuitive meaning:
(before ϕ)ψ: ψ will hold, and it will hold before ϕ holds.
If ϕ and ψ have several occurrences in the future, (before ϕ)ψ guarantees

that the first occurrence of ψ will hold before the first occurrence of ϕ. The
formal definition of before is:

(before ϕ)ψ
def
= ((until ψ)¬ϕ) ∧ (< F > ψ)

Therefore we have the valid formula:
(before false)ψ ↔< F > ψ
Then, it can be shown that we have the following valid formulas:
obi(α) ↔ [H](until donei(α))[D] < F > donei(α)
fbi(α) ↔ [H][F][D][F]¬donei(α)
From these properties the intuitive meaning of the obligation operator and

of the prohibition operator can be reformulated in the following way:
obi(α): for every future history, until α has been done, α must have been

done at some future point.
fbi(α): for every future history, at every point of this history, α must not

have been done at any future point.

3 Extension to norms with deadlines

The definitions which have been presented in the previous section are now ex-
tended to norms with deadlines.

Obligation.
We define the operator obi (α < d) whose intuitive meaning is:
obi(α < d): it is obligatory for agent i to have done the action α between the

present point and the first occurrence of the proposition d.
Its formal definition is:

3 Here we have slightly modified Segerberg’s definition of the until operator.

69

obi(α < d)
def
= [H](until (donei(α) ∨ d))[D](before d)donei(α)

According to this definition Segerberg’s definition can be found as a special
case where the deadline never happens, i.e. where d is equivalent to false. Indeed,
we have the valid formula:

obi(α < false) ↔ [H](until donei(α))[D] < F > donei(α)
Therefore, we have the valid formula:

obi(α < false) ↔ obi(α)
Prohibition.
Prohibition to do an action until a given deadline occurs is defined in a similar

way through the operator fbi(α < d) whose intuitive meaning is:
fbi(α < d): it is forbidden for agent i to have done the action α between the

present point and the first occurrence of the proposition d.
Its formal definition is:

fbi(α < d)
def
= [H](until d)[D](until d)¬donei(α)

Segerberg’s definition can also be found as a special case. Indeed, we have
the valid formula:

fbi(α < false) ↔ [H][F][D][F]¬donei(α)
Therefore, we have the valid formula:
fbi(α < false) ↔ fbi(α)
Permission.
Segerberg did not propose a definition for permission. Such a definition can

easily be derived from the definitions of obligation and prohibition. The permis-
sion operator is denoted by: pmi(α < d), and it is intuitively defined by:

pmi(α < d): it is permitted for agent i to have done the action α between
the present point and the first occurrence of the proposition d.

It is formally defined by:

pmi(α < d)
def
= [H](until d) < D > (before d)donei(α)

In this definition we do not have the condition: (until (donei(α)∨d)). Instead
of this condition we have: (until d). The reason is that agent i is permitted to
have done the action α several times before d.

For instance, if it is permitted to access a file before the end of the day, after
the file has been accessed it remains permitted to access this file before the end
of the day.

In the case where the deadline never occurs, that is, if d is false, we have
the valid formula:

pmi(α < false) ↔ [H][F] < D >< F > donei(α)
The comparison of pmi(α < false) with obi(α) shows that, for every future

continuation, in the case of a permission, the property < F > donei(α) holds at
every future point for some normal continuation, while for an obligation it holds
until α has been done at some future point for every normal continuation. This
is consistent with our intuition.

It is worth noting that obi (α < d)∧fbi(α < d) is not an inconsistent formula
(it is satisfied when norm(hg′) = ∅), though it is impossible to fulfil both norms.

Finally, we can easily show that we have the valid formulas:
obi (α < d) → [H](until (donei(α) ∨ d))obi (α < d)

70

fbi (α < d) → [H](until d)fbi (α < d)

pmi (α < d) → [H](until d)pmi (α < d)

These properties show how norms persist.

Violations.

An obligation of the form obi(α < d) has been violated at the present instant
t, if there is some instant t1 in the past where:

- d has occurred, and

- before t1 there was an instant t2 where we had obi(α < d), and the action α
has not been done between t2 and the first instant after t2 where d has occurred.

If ob.viol(i, α, d) is used to denote the formula that characterizes the violation
of the obligation obi(α < d), we have:

ob.viol(i, α, d)
def
= < P > (d∧ < P > (obi(α < d) ∧ (until d)¬donei(α)))

In the case where d is logically equivalent to false the above formula can
never be true, because < P > (d) is always false. That means that this obligation
can never be violated, and that fits our intuition.

It is worth noting that after the first occurrence of d the obligation obi(α < d)
imposes no more constraint. Nevertheless, after d we can have ob.viol(i, α, d) if
a violation has occurred in the past (before d).

Note also that, if α has been done before the instant where the obligation
obi(α < d) has been created, but α has not been done after that instant, the
obligation is violated. We can find real scenarios where this position is, in a first
approach, questionable.

Let’s imagine, for instance, a customer who has the intention to buy some
good and sends a check to pay it before sending the order to buy it. Suppose
that the regulation states that a good has to be paid after the good has been
ordered and no later than one month after this order. According to our formal
definition of a violation, the obligation has been violated. This is rather counter
intuitive.

In fact this is more a theoretical problem than a practical one. The problem
is not that the good has not been paid, but rather that it has been paid “too
early”. A formal solution to avoid this oddity could be to create the obligation
to pay only if the good has not been already paid.

A prohibition of the form fbi(α < d) has been violated at the present instant
t if there is some instant t1 in the past where:

- we had fbi(α < d), and

- between t1 and the first occurrence of d, α has been done.

If fb.viol(i, α, d) is used to denote the formula that characterizes the violation
of the forbiddance fbi(α < d), we have:

fb.viol(i, α, d)
def
= < P > (donei(α)∧ < P > (fbi(α < d)∧(before d)donei(α)))

Note that, in the case of a prohibition, a violation may occur before d has
occurred.

In the case of permissions there is no violation. Indeed, a permission does
not impose to do an action, it just offers the possibility to do an action without
any violation of the norms.

71

4 Extension to norms that apply during an interval

There are many practical examples where a norm applies during an interval
which is defined by two events. For instance, it may be obligatory to update a
file between 11 p.m. and 5 a.m.

In the case where d or d′ may have several occurrences, it is assumed that the
norm applies between the first occurrence of d (say instant t) after the instant
where the norm has taken place, and the first occurrence of d′ after t4.

Finally, it is assumed that the norm does not apply at the instants where d
or d′ occur.

To characterize violations we have to be able to characterize the instant of
the first future occurrence of d. For that purpose the operator < F1, ϕ > ψ is
introduced. Its intuitive meaning is:

< F1, ϕ > ψ: there exists some instant t in the future where we have ψ, and
t is the first instant, since the present instant, where we have ϕ.

It is formally defined by:
(h, g) |=< F1, ϕ > ψ iff ∃g1∃g2(g ≈ g1g2 ∧ (hg1, g2) |= ϕ ∧ ¬∃g′1∃g′′1 (g1 ≈

g′1g
′′
1 ∧ ¬(g′′1 = empty) ∧ (hg′1, g

′′
1 g2) |= ϕ) ∧ (hg1, g2) |= ψ)

Obligation.
We introduce the obligation operator obi(d < α < d′) whose intuitive mean-

ing is:
obi(d < α < d′): it is obligatory for agent i to have done the action α between

the first occurrence of d and the first following occurrence of d′.
Its formal definition is:
obi(d < α < d′)

def
= [H] < F1, d > (

(until (donei(α) ∨ d′))[D](before d′)donei(α))
This definition can be read:

for every future history:
- there exists some instant t in the future where:
– d has occurred for the first time, and
– until we have donei(α) ∨ d′:
— for every ideal continuation: α has been done before d′.

The reason why in this definition we need the operator < F1, d > instead of
< F >, is that we have to refer to the instant which is the first future occurrence
of d, and not just to some future instant.

Prohibition.
We introduce the prohibition operator fbi(d < α < d′) whose intuitive mean-

ing is:
fbi(d < α < d′): it is forbidden for agent i to have done the action α between

the first occurrence of d and the first following occurrence of d′.
Its formal definition is:

4 Since we have to consider ”the first occurrence of d′ after t” we cannot trivially define
norms that apply in an interval from norms that apply after the first occurrence of d
and before the first occurrence of d′ because it may happen that the first occurrence
of d′ occurs before the first occurrence of d.

72

fbi(d < α < d′)
def
= [H] < F1, d > (

(until d′)[D](until d′)¬donei(α))
This definition can be read as:

for every future history:
- there exists some instant t in the future where:
– d has occurred for the first time, and
– until we have d′:
— for every ideal continuation: α has not been done before d′.

Permission.
We introduce the permission operator pmi(d < α < d′) whose intuitive

meaning is:
pmi(d < α < d′): it is permitted for agent i to have done the action α between

the first occurrence of d and the first following occurrence of d′.
Its formal definition is:
pmi(d < α < d′)

def
= [H] < F1, d > (

(until d′) < D > (before d′)donei(α))
This definition can be read:

for every future history:
- there exists some instant t in the future where:
– d has occurred for the first time, and
– until d′:
— there exists a future ideal continuation where α has been done before d′.

Violations.

donei(α)

¬donei(α)
d′d

d

obi(d < α < d′) ob.viol(i, α, d, d′)

fb.viol(i, α, d, d′)fbi(d < α < d′)

d′

t2 t1t3

t2 t1t3

Fig. 1. Violations of obligation to do and prohibition to do.

A violation of the obligation obi(d < α < d′) is denoted by: ob.viol(i, α, d, d′).
We formally have:

ob.viol(i, α, d, d′)
def
= < P > (d′∧ < P > (d ∧

< P > (obi(d < α < d′)∧ < F1, d > ((until d′)¬donei(α)))))
This characterization of a violation can be read as (see figure 1):

- there exists an instant t1 in the past where we had d′, and
- before t1 we had d at the instant t2, and
- before t2 we had obi(d < α < d′) at the instant t3, and

73

- since the first occurrence of d after t3, until the first occurrence of d′, α has
never been done.

A violation of the prohibition fbi(d < α < d′) is denoted by: fb.viol(i, α, d, d′).
We formally have:

fb.viol(i, α, d, d′)
def
= < P > (donei(α) ∧

< P > (d∧ < P > (fbi(d < α < d′)∧ < F1, d > ((before d′)donei(α)))))

This characterization of a violation can be read (see figure 1):

- there exists an instant t1 in the past where we had donei(α), and
- before t1 we had d at the instant t2, and
- before t2 we had fbi(d < α < d′) at the instant t3, and
- after the first occurrence of d after t3 we had donei(α) before d

′.

5 Comparison with other works

To compare our work with other approaches that can be found in the literature,
we can mention Pörn [19], who defines formulas of the form: OEiϕ, whose mean-
ing is: it is obligatory for agent i to bring it about that ϕ. However, the operator
Ei does not mention which action has been done and there is no formal means
to express that the effect ϕ should be obtained before a given deadline. Then,
the obligation is violated as soon as we have ¬Eiϕ, and the agent i has no delay
to perform some appropriate action.

In [17], Horty and Belnap present a logic where histories have a tree structure,
which has some similarities with Segerberg’s structures. The main difference
is that, like for Pörn, actions are not explicitly represented. They define the
operator [i dstit : ϕ] whose intuitive meaning is rather close to Eiϕ, but its
semantics makes explicit reference to histories and instants. Deontic notions are
represented via the deontic modal operator O, and O[i dstit : ϕ] means that it
is obligatory for agent i to see to it that ϕ. Nevertheless, the concept of deadline
is ignored.

As mentioned in the introduction, Dignum et al.[15] are among the few peo-
ple who have explicitly investigated norms with deadlines. They have defined a
temporal logic with tree structures and the operator Eiϕ. However, the formal
semantics given to this operator is quite different from Pörn’s semantics, and,
in our view, it is not perfectly clear. Norms are formalized according to Ander-
son’s reductionist approach [1] thanks to a specific proposition that means: “a
violation has occurred”. Formulas that express obligations to do with deadlines
have the form: Oi(ϕ < d). Their meaning is: for all future histories, either, until
d has occurred, agent i has brought about that ϕ and there is no violation, or,
at the next instant, we have d and there is a violation. The strong limitation of
this formalization is that in the reductionist approach there is no explicit repre-
sentation of ideal histories. Moreover deontic modalities cannot be nested with
other modal operators. For instance, in the context of a psychiatric hospital, we
would like to be able to represent the fact that for some patients it is prohibited
to know that it is prohibited to access their own file.

74

In Broersen et al. [5], formulas of the form Oi(ϕ, d) mean that it is obligatory
for agent i that ϕ holds before the deadline d. That could be reformulated in
Segerberg’s framework as: [H](until (ϕ ∨ d))Oiϕ, where Oi obeys a KD logic.
But there is no explicit reference to the actions, and we see this operator as a
representation of obligation to be (rather than obligation to do an action) with
deadlines. In [6], there is no deontic modality and norms are formalized by their
violation à la Anderson. We have seen above the limitations of this approach.

Finally, in [3], Äqvist presents a logic that combines temporal and deontic
operators. In [4], he suggests to extend it with deadlines. The idea is, for example,
to represent that it is obligatory to have ϕ before t3 by a formula that means that
is it obligatory to have ϕ either in t1 or t2 or t3. This solution may be interesting
for some particular applications but it lacks generality. Moreover there is no
explicit representation of actions, and, again, the resulting logic would be closer
to a logic for obligations to be than to a logic for obligations to do.

6 Conclusion

We have extended Segerberg’s logical framework to obligations, prohibitions and
permissions to do an action before a proposition comes to be true or within
an interval defined by two propositions. In each case, we have also formally
characterized the circumstances where these norms are violated.

The resulting definitions of norms and of their violations are far from being
simple and that is why, as mentioned in the introduction, we need formal defini-
tions to prevent misunderstanding between people who have to design computer
systems which have to fulfil the norms about security.

Nevertheless these results have to be considered as a preliminary step which
clarify semantical issues but should be completed by further works in several
directions.

The first direction is about the semantics of other notions involved in norm
definitions. In this direction we should extend the definitions to obligations to be
with deadlines (for example, the obligation to have digital data for identification
on your passport before the end of the year). Another direction is the obligation
to have started the performance of an action. For example, the obligation, for
a driver, to start to cross the road when the light turns to green. It seems that
this kind of norms could be formalized thanks to formulas of the form: doesi(α).

The second direction is the automatization of reasoning about norms with
deadlines. This requires to define a sound and complete axiomatics of the seman-
tics which has been presented, to analyze its formal properties, like decidability,
to design strategies for automated reasoning and to analyze their complexity in
the perspective of potential implementations.

Acknowledgement.We would like to thank Lennart Aqvist, Krister Segerberg,
Andreas Herzig and an anonymous referee for their fruitful comments. If there
are any mistakes they are the only responsibility of the author.

75

References

1. A. R. Anderson. A reduction of deontic logic to alethic modal logic. Mind, 67,
1958.

2. L. Aqvist. Deontic logic. In D. Gabbay and F. Guenthner, editors, Handbook of
Philosophical Logic, volume 2. Reidel, 1984.

3. L. Aqvist. Combination of tense and deontic modality. In A. Lomuscio and D. Nute,
editors, Proceedings of the 7th International Workshop on Deontic Logic in Com-
puter Science. Springer, LNAI 3065, 2004.

4. L. Aqvist. Private communication, 2004.

5. J. Broersen, M. Dastani, and L. van der Torre. BDIO-CTL: obligations and the
specification of agent behaviour. In International Joint Conference on Artificial
intelligence, 2003.

6. J. Broersen, F. Dignum, V. Dignum, and J-J. C. Meyer. Designing a deontic
logic of deadlines. In A. Lomuscio and D. Nute, editors, Proceedings of the 7th
International Workshop on Deontic Logic in Computer Science. Springer, LNAI
3065, 2004.

7. B. F. Chellas. Modal Logic: An introduction. Cambridge University Press, 1988.

8. R. Demolombe. De l’évolution des croyances à l’évolution des obligations dans le
calcul des situations. In A. Herzig, B. Chaib-draa, and P. Mathieu, editors, Actes
des secondes Journées Francophones sur les Modèles Formels de l’Interaction.
Cépaduès-Editions, 2003.

9. R. Demolombe, P. Bretier, and V. Louis. Norms with deadlines in Dynamic Deontic
Logic (short paper). In G. Brewka, S. Coradeschi, A. Perini, and P. Traverso,
editors, Proceedings of the 17th European Conference on Artificial Intelligence.
IOS Press, 2006.

10. R. Demolombe and A. Herzig. Obligation change in Dependence Logic and Sit-
uation Calculus. In A. Lomuscio and D. Nute, editors, Proceedings of the 7th
International Workshop on Deontic Logic in Computer Science. Springer, LNAI
3065, 2004.

11. R. Demolombe and R. Hilpinen. Special issue on Deontic Logic in Computer
Science. Fundamenta Informaticae, 48(2-3), 2001.

12. R. Demolombe and A.J. Jones. Actions and normative positions. A modal-logical
approach. In D. Jacquette, editor, Companion to Philosophical Logic. Blackwell,
2002.

13. F. Dignum and R. Kuiper. Combining dynamic deontic logic and temporal logic
for the specification of deadlines. In Thirties HICSS, 1997.

14. F. Dignum, H. Weigand, and E. Verharen. Meeting the deadline: on the formal
specification of temporal deontic constraints. In International Symposium of Man-
agement of Intelligent Systems, 1996.

15. V. Dignum, J-J. Meyer, F. Dignum, and H. Weigand. Formal specification of
interaction in agent societies. In Second Goddard workshop on Formal Approaches
to Agent-Based Systems, 2002.

16. D. Harel. Dynamic logic. In D. Gabbay and F. Guenthner, editors, Handbook of
Philosophical Logic, volume 2. Reidel, 1984.

17. J.F. Horty and N. Belnap. The deliberative STIT: a study of action, omission,
ability, and obligation. Journal of Philosophical Logic, 24:583–644, 1995.

18. A. Lomuscio and D. Nute. Deontic Logic in Computer Science. Springer, LNAI
3065, 2004.

76

19. I. Pörn. Action Theory and Social Science. Some Formal Models. Synthese Library,
120, 1977.

20. K. Segerberg. Private communication, 2003.
21. K. Segerberg. Some Meinong/Chisholm thesis. In K. Segerberg and K. Sliwinski,

editors, Logic, Law, Morality. A festschrift in honor of Lennart Aqvist, volume 51,
pages 67–77. Uppsala Philosophical Studies, 2003.

22. K. Segerberg. Intension, Intention. In R. Kahle, editor. CSLI Publications, 2004.
23. K. Segerberg. A blueprint for deontic logic in three (not necessarily easy) steps. In

Giacomo Bonanno, James Delgrande, Jérôme Lang, and Hans Rott, editors, Formal
Models of Belief Change in Rational Agents, number 07351 in Dagstuhl Seminar
Proceedings. Internationales Begegnungs- und Forschungszentrum für Informatik
(IBFI), Schloss Dagstuhl, Germany, 2007.

77

Logics for Access Control: A Conditional Approach

Valerio Genovese1, Laura Giordano2, Valentina Gliozzi3, and Gian Luca Pozzato3

1 University of Luxembourg and Università degli Studi di Torino - Italy
valerio.genovese@uni.lu

2 Dipartimento di Informatica - Università del Piemonte Orientale - Alessandria, Italy
laura@mfn.unipmn.it

3 Dipartimento di Informatica - Università degli Studi di Torino - Torino, Italy
{gliozzi,pozzato}@di.unito.it

Abstract. In this paper we provide a reconstruction of access control logics
within constructive conditional logics, by regarding the assertionA saysφ, whose
intended meaning is thatprincipal A says thatφ, as a conditional implication.
We identify the conditional axioms needed to capture the basic properties of the
“says” operator and to provide a proper definition of booleanprincipals. Most
of these axioms are standard axioms of conditional logics. We provide a Kripke
model semantics for the logic and we prove that the axiomatization is sound and
complete with respect to the semantics. Also, we define a sound, complete and
cut-free labelled sequent calculus for it.

1 Introduction

Access control is concerned with the decision of accepting or denying a request from
a principal (e.g., user, program) to do an operation on an object. In practice, an access
control system is a product of several, often independent, distributed entities with dif-
ferent policies that interact in order to determine access to resources. In order to specify
and reason about such systems, many formal frameworks have been proposed [1–5].

A common feature of most well-known approaches is the employment of construc-
tive logics enriched with formulas of the formA saysϕ, intuitively meaning that the
principalA assertsor supportsϕ to hold in the system.In [6] it is shown that an intu-
itionistic interpretation of the modality “says” allows toavoid unexpected conclusions
that are derivable whensays is given an axiomatization in classical logic.

In [7] an access control logic, ICL, is defined as an extensionof intuitionistic propo-
sitional logic, in which the operatorsays is given a modal interpretation in the logic
S4. The treatment of the operatorsays as a modality can be also found in [8], which
introduces a logical framework, FSL, based on multi-modal logic methodology.

Even if there is some agreement on looking at the says construct as a modal opera-
tor, thecorrespondence theorybetween its axiomatizations and the underlying (Kripke-
syle) semantics is left unexplored. By correspondence theory we mean identifying
canonical properties for well-known access control axioms, i.e., first-order conditions
of Kripke structures that arenecessaryandsufficientfor the corresponding axiom to
hold. This approach raise several challenges because axiomof access control are not
standard in modal literature and their correspondence withthe underlying semantics is

78

2 V. Genovese, L. Giordano, V. Gliozzi, G.L. Pozzato

mainly unexplored. Identifying canonical properties for well-known axioms for access
control permits to study them separately and naturally yields completeness for logics
that adoptanycombination of them. This methodology is significant if we want logic
to be employed to compare different access control models, because different systems
adopts different axioms depending on the specific application domain.

In this paper we show that conditional logics [9] can providea natural framework
to define axiomatization, semantics and proof methods for access control logics. We
present an intuitionistic logic,CondACL , which integrates access control logics with
conditional logics. We formalize thesaysoperator as a conditional normal modality so
thatA saysφ is regarded as a conditional implicationA⇒ φ, meaning that proposition
φ holds in all the preferred worlds for the principalA. The generality of this approach
allows a natural formalization of boolean principals [7], that is, principals which are
formed by boolean combination of atomic principals.

From the access control point of view, thesaysoperator satisfies some basic axioms
of access control logics [7, 10]. We define a sound and complete Kripke semantics for
CondACL as well as a sound and complete cut-free sequent calculus forit.

The paper is structured as follows. In Section 2 we introducethe axiomatization
and the semantics for the intuitionistic conditional logicCondACL and we compare
it with existing approaches. In Section 3 we show that the axiomatization is sound
and complete with respect to the semantics. In Section 4 we define a cut-free sequent
calculus forCondACL . Section 6 contains the conclusions and a discussion of related
work.

2 The logicCondACL

In this section, we introduce the conditional intuitionistic logic CondACL for access
control by defining its axiomatization and Kripke semantics. The formulation of the
“says” modality as a conditional operator allows boolean principals to be modelled
in a natural way, since in a conditional formulaA saysφ, bothA andφ are arbitrary
formulas. For instance, we can write,A ∧ B saysφ to mean that principalsA andB
jointly say thatφ, andA∨B saysφ to mean that principalsA andB independently say
thatφ. Indeed, conditional logics provide a natural generalization of multimodal logics
to the case when modalities are labelled by arbitrary formulas.

2.1 Axiom System

We define the languageL of the logicCondACL . LetATM be a set of atomic proposi-
tions. The formulas ofL are defined inductively as follows: ifP ∈ ATM , thenP ∈ L;
⊥ ∈ L, where⊥ is a proposition which is always false; ifA, ϕ, ϕ1 andϕ2 are formulas
of L, then¬ϕ, ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, ϕ1 → ϕ2, andA saysϕ are formulas ofL.

The intended meaning of the formulaA saysϕ, whereA andϕ are arbitrary for-
mulas, is thatprincipalA says thatϕ, namely, “the principalA asserts or supportsϕ”
[7]. Although the principalA is an arbitrary formula, in order to stress the fact that a
formula is playing the role of a principal, we will denote it by A,B,C, . . . while we
will use greek letters for arbitrary formulas.

79

Logics for Access Control: A Conditional Approach 3

The axiomatization ofCondACL contains few basic axioms for access control logics
[7, 6], as well as few additional axioms governing the behavior of boolean principals.

Basic Axioms. Theaxiom systemof the logicCondACL contains the following axioms
and inference rules, which are intended to capture the basicproperties of thesays
operator.

(TAUT) all tautologies of intuitionistic logic
(K) A says(α→ β) → (A saysα→ A saysβ)
(UNIT) α→ (A saysα)
(C) A says(A saysα→ α)
(MP) If ⊢ α and⊢ α→ β then⊢ β
(RCEA) If ⊢ A↔ B then⊢ (A saysγ) ↔ (B saysγ)
(RCK) If ⊢ α→ β then⊢ (A saysα) → (A saysβ)

We say that a formulaα is a theorem of the logic, and write⊢ α if there is a derivation
of α from the above axioms and rules. We say thatα can be derived from a set of
formulasΓ , and writeΓ ⊢ α, if there areγ1, . . . γn in Γ such that⊢ γ1∧ . . .∧γn → α.
The rule (MP) is modus ponens. (RCEA) and (RCK) are standard inference rules for
conditional logics. (RCK) plays the role of the rule of Necessitation (if⊢ φ then⊢ 2φ)
in modal/multimodal logic. The axiom (K) belongs to the axiomatization of all normal
modal logics and it is derivable in “normal” conditional logics. (UNIT) and (K) are the
characterizing axioms of the access control logics ICL [7],while (C) has been included
in the axiomatization of the logicDTL0 in [10].

Axioms for boolean principals. The axioms introduced above do not enforce by them-
selves any intended property of boolean principals. In thissubsection, we discuss the
properties that are intended for boolean principals and we introduce axioms which cap-
ture such properties. Specifically, we focus on the intendedmeaning of conjunctions
and disjunctions among principals.

Our interpretation of the statementA ∧ B saysφ is thatA andB jointly (combin-
ing their statements) say thatφ. It comes from the interpretation of the statement as a
conditional implication:A andB (jointly) conditionally proveφ. Instead, our interpre-
tation of the statementA∨B saysφ is thatA andB disjointly (independently) say that
φ, which comes from the reading of the conditional formula asA andB (disjointly)
conditionally proveφ.

Concerning the statementA∨B saysφ, we expect that if bothA saysφ andB says
φ, thenA andB disjointly (independently) say thatφ. This property can be captured by
the following axiom:

A saysφ ∧B saysφ→ A ∨B saysφ

which corresponds to the well known axiom (CA) of conditional logics [9]. Similarly,
we can expect that the converse axiom

A ∨B saysφ→ A saysφ ∧B saysφ

80

4 V. Genovese, L. Giordano, V. Gliozzi, G.L. Pozzato

holds. The two axioms together enforce the property thatA andB disjointly say thatφ
if and only ifA says thatφ andB says thatφ .

Concerning the statementA ∧ B saysφ, we expect thatA andB jointly say that
φ when eitherA or B says thatφ. This condition can be enforced by introducing the
axiom

A saysφ→ A ∧B saysφ

which, although is a very controversial axiom of conditional logics, called monotonic-
ity4, is proved to be armless in this intuitionistic setting. We would like to have the
property that ifA ∧B saysφ then, by combining the statements ofA andB, φ can be
concluded. This is not equivalent to saying that eitherA saysφ orB saysφ. Indeed, this
last property would correspond to axiom (A ∧ B saysφ) → (A saysφ) ∨ (B saysφ),
which is too strong and not wanted. In the following we show that this property can be
captured in a first order axiomatization.

Although we do not put any restriction to the language, in thefollowing we will
limit our consideration to principals obtained by boolean combination (conjunction and
disjunction) of atomic principals and of the principal⊥. Although a principal can be an
arbitrary propositional formula (including negation and implication), no specific prop-
erties are intended for such formulas, and no specific axiomsare introduced for them.

The axiomatization ofCondACL includes (in addition) the following axioms:

(CA) A saysφ ∧B saysφ→ A ∨B saysφ
(CA-conv) A ∨B saysφ→ A saysφ
(Mon) A saysφ→ A ∧B saysφ
(DT) A ∧B saysφ→ (A says(B → φ))

(ID) A saysA

The first three axioms are those introduced above. (DT) and (ID) are used together
to enforce the property that ifA ∧ B saysφ then, by combining the statements ofA
andB, φ can be concluded. The two axioms allow propositions representing principals
to occur on the right of thesaysmodality. The intended meaning of (DT) is that, if
A ∧ B saysφ, thenA says thatφ holds in allB worlds (worlds visible to the principal
B). The meaning of (ID) is that “A says that principalA is visible”. We will come back
to the meaning of these axioms when describing the semantic conditions associated
with the axioms.

It can be shown that:

Theorem 1. The above axiomatization is consistent.

Proof. Consistency immediately follows from the fact that, by replacingA saysB with
the intuitionistic implicationA→ B, we obtain axioms which are derivable in intuition-
istic logic.

2

4 In general, conditional logics only allow weaker forms of monotonicity, encoded, for instance,
by the axiom (CV) of Lewis’ logic VC.

81

Logics for Access Control: A Conditional Approach 5

Let us observe that the above interpretation of conjunctionand disjunction between
principals is different from the one given in the logic ICLB [7], which actually adopts
the opposite interpretation of∧ and∨: in Garg and Abadi’s logic ICLB, A ∧ B saysφ
is the same asA saysφ ∧ B saysφ, whileA∨B saysφmeans that, by combining the
statements ofA andB,φ can be concluded. Due to this, let us say, superficial difference,
the properties of the principalA ∧B in our logic are properties of the principalA ∨B
in their logic, and vice-versa, the properties of the principalA ∨ B in our logic are
properties of the principalA ∧B in their logic.

Observe that the axioms, (trust), (untrust) and (cuc’) of the logic ICLB are not deriv-
able from our axiomatization. Also, the addition of the axiom (untrust)⊤ says⊥ to our
axiomatization would entail that for all principalsA, A says⊥, which is an unwanted
property.

2.2 Semantics

The semantics of the logicCondACL is defined as follows.

Definition 1. A CondACL model has the formM = (S,≤, {RA}, h) where:S 6= ∅
is a set of items called worlds;≤ is a partial order over S;RA is a binary relation on
S associated with the formulaA; h is an evaluation functionATM −→ Pow(S) that
associates to each atomic propositionP the set of worldsx in whichP is true.

We define the truth conditions of formulas with respect to worlds in a modelM, by
the relationM, x |= φ, as follows. We use[|φ|] to denote{y ∈ S | M, y |= φ}.

1. M, t |= P ∈ ATM iff, for all s such thatt ≤ s, s ∈ h(P)
2. M, t |= ϕ ∧ ψ iff M, t |= ϕ andM, t |= ψ
3. M, t |= ϕ ∨ ψ iff M, t |= ϕ or M, t |= ψ
4. M, t |= ϕ→ ψ iff for all s such thatt ≤ s (if M, s |= ϕ thenM, s |= ψ)
5. M, t |= ¬ϕ iff, for all s such thatt ≤ s, M, s 6|= ϕ
6. M, t 6|= ⊥
7. M, t |= A saysψ iff, for all s such thattRAs, M, s � ψ.

We say thatφ is valid in a modelM if M, t |= φ for all t ∈ S. We say thatφ is valid
tout court(and write|= φ) if φ is valid in every model. We extend the notion of validity
to a set of formulasΓ in the obvious way: for allt, M, t |= Γ if M, t |= ψ for all
ψ ∈ Γ . Last, we say thatφ is a logical consequenceof Γ (and writeΓ |= φ) if, for all
modelsM, for all worlds t, if M, t |= Γ , thenM, t |= φ.

The relations≤ andRA must satisfy the following conditions:

(S-Int) ∀t, s, z ∈ S, if s ≤ t andtRAz thensRAz;
(S- UNIT) ∀t, s ∈ S, if sRAt, thens ≤ t;

(S-C) ∀t, s, z ∈ S, if sRAt andt ≤ z, thenzRAz;
(S-CA) RA∨B(t) = RA(t) ∪RB(t).

(S-Mon) ∀t, s, z ∈ S, if sRA∧Bt, thensRAt andsRBt;
(S-DT) ∀t, s, z ∈ S, if sRAt andt ≤ z, andz ∈ [|B|], thensRA∧Bz;
(S-ID) ∀t, s ∈ S, if sRAt, thent ∈ [|A|];

82

6 V. Genovese, L. Giordano, V. Gliozzi, G.L. Pozzato

(S-RCEA) if [|A|] = [|B|], thenRA = RB.

Condition (S-Int) enforces the property that when a formulaA saysφ true in a world
t, it is also true in all worlds reachable froms by the relation≤ (i.e., in all worldss
such thatt ≤ s). All the other semantic conditions are those associated with the axioms
of the logic, apart from condition (S-RCEA), which is the well-known condition for
normality in conditional logics, claiming that the accessibility relationRA is associated
with the semantic interpretation ofA. (S-CA) is the semantic condition for both axioms
(CA) and its converse.

Observe that, in the semantics above, the binary relationRA plays the role of the
selection functionf , which is used in most formulations of conditional logic semantics.
In particular,sRAt corresponds tot ∈ f([|A|], s), and the conditions above are indeed
conditions on the selection functionf , as usual in conditional logics. Note also that
the semantic conditions for some of the axioms, as for instance (DT), slightly departs
from the semantic condition usually given to these axioms inconditional logic. This is
due to the fact thatCondACL is an intuitionistic conditional logic and the implication
occurring within axioms is intuitionistic implication.

Concerning the interpretation of boolean conditionals and, in particular, of the con-
junction between principals, it can be proved that, from thesemantic conditions of
(Monotonicity), (ID) and (DT) it follows that:

RA∧B(t) = RA(t) ∩RB(t).

It is worth noticing that the notion of logical consequence defined above can be used to
verify that a requestϕ of a principalA is compliant with a set of policies. Intuitively,
given a set of formulasΓ representing policies, we say thatA is compliant withΓ iff
Γ,A saysφ |= φ. For instance, ifΓ contains the following formulas:

Admin1 says(SU user1 → write perm user1)
Admin2 saysSU user1
((Admin1 ∧Admin2) saysdelete file1) → delete file1
Admin1∧Admin2 says((write perm user1∧user1 saysdelete file1) → delete file1)
user1 saysdelete file1

we obtain thatΓ, user1 saysdeletefile1 |= delete file1.

3 Soundness and Completeness

In this section we prove that the axiomatization of the logicCondACL given above is
sound and complete with respect to the semantics of Definition 1.

Theorem 2 (Soundness).Given a formulaϕ ∈ L, if ⊢ ϕ, then|= ϕ.

Proof. It is easy to prove that each axiom is a valid formula and, for each inference
rule, if the antecedent of the rule is a valid formula, the consequence of the rule is also
a valid formula.

2

83

Logics for Access Control: A Conditional Approach 7

The completeness proof we present is based on the proof of completeness for the Kripke
semantics of intuitionistic logic in [11] and extends it to deal with the modalitiessays
in the language and, more precisely, with the interplay between the relation≤ and the
accessibility relationsRA associated with the modalities.

Definition 2 (Consistency).LetΓ be a set of well formed formulas.Γ is consistent iff
Γ 6⊢ ⊥. If Γ has an infinite number of formulas, we say thatΓ is consistent iff there are
no finiteΓ0 ⊂ Γ such thatΓ0 ⊢ ⊥.

Definition 3 (Saturation). Let Γ be a set of well formed formulas, we say thatΓ is
saturated iff 1.Γ is consistent; 2. ifΓ ⊢ ϕ, thenϕ ∈ Γ ; 3. if Γ ⊢ ϕ ∨ ψ, then
Γ ⊢ ϕ or Γ ⊢ ψ.

Lemma 1 (Saturated Extensions).Let Γ be a set of well formed formulas. Suppose
Γ 6⊢ ϕ, then there is a saturated extensionΓ ∗ such thatΓ ∗ 6⊢ ϕ.

Lemma 2. Let Γ be a set of formulas and let∆ = {ϕ : A saysϕ ∈ Γ}. If ∆ ⊢ ψ,
thenΓ ⊢ A saysψ.

Proof. Suppose there is a derivation ofψ from ∆. Then, there must be a finite set
of formulas{ϕ1, . . . , ϕn} ⊆ ∆ such that{ϕ1, . . . , ϕn} ⊢ ψ. By definition of⊢, ⊢
ϕ1 ∧ . . . ∧ ϕn → ψ. By (RCK) and (K),⊢ A saysϕ1 ∧ . . . ∧A saysϕn → A saysψ,
and from definition of⊢ (and sinceA saysϕi ∈ Γ for all i = 1, . . . , n) we conclude
thatΓ ⊢ A saysψ.

2

Definition 4 (Canonical model construction).Let Γ0 be any saturated set of formu-
las. Then we defineM = (S,≤, {RA}, h) such that: S is the set of all saturated
Γ ⊇ Γ0; Γ1 ≤ Γ2 iff Γ1 ⊆ Γ2; Γ1RAΓ2 iff {α | A saysα ∈ Γ1} ⊆ Γ2; for all
P ∈ ATM , h(P) = {Γ ∈ S | P ∈ Γ}.

Lemma 3. For all Γ ∈ S and each wff formulaϕ, we have thatM, Γ |= ϕ iff ϕ ∈ Γ .

Proof. By induction on the complexity ofϕ. In caseϕ is an atomic formula, the lemma
holds by definition. Forϕ ≡ φ∧ψ the proof is easy and left to the reader. Forϕ ≡ φ∨ψ,
thenΓ |= φ ∨ ψ ⇔ (Γ |= φ or Γ |= ψ) ⇔ (φ ∈ Γ or ψ ∈ Γ) ⇔ φ ∨ ψ ∈ Γ (by
the saturation ofΓ). Forϕ ≡ φ → ψ, supposeΓ |= φ → ψ. Then for all saturated
Γ

′

⊃ Γ we have that ifΓ
′

|= φ, thenΓ ′ |= ψ. AssumeΓ 6⊢ φ→ ψ, thenΓ ∪{φ} 6⊢ ψ;
let Γ

′

be a saturated extension ofΓ ∪ {φ} such thatΓ
′

6⊢ ψ, thenΓ
′

|= φ but not
Γ

′

|= ψ (induction hypothesis); this contradictsΓ |= φ → ψ, henceΓ ⊢ φ → ψ. As
Γ is saturated, by condition 2 in Definition 3,φ → ψ ∈ Γ . The converse is trivial. For
ϕ ≡ A saysφ, supposeΓ |= A saysφ. Hence, for allΓ ′ such thatΓRAΓ

′, Γ ′ |= φ.
By inductive hypothesis,φ ∈ Γ ′. Let ∆ = {α : A saysα ∈ Γ}. By construction,
Γ ′ ⊇ ∆. Assume, for a contradiction, thatA saysφ 6∈ Γ . By condition 2 in Definition
3,Γ 6⊢ A saysφ. Then, by Lemma 2,∆ 6⊢ φ. By Lemma 1, there is a saturated extension
∆∗ of∆ such that∆∗ 6⊢ φ, i.e.φ 6∈ ∆∗. By definition ofRA, ΓRA∆

∗. This contradicts
the fact that, for allΓ ′ such thatΓRAΓ

′, φ ∈ Γ ′. The converse is trivial.

84

8 V. Genovese, L. Giordano, V. Gliozzi, G.L. Pozzato

2

Lemma 4. Let M be the canonical model as defined in Definition 4.M satisfies the
semantic conditions (S-Int), (S-UNIT), (S-C), (S-CA), (S-Mon), (S-DT), (S-ID), and (S-
RCEA).

Proof. We have to prove that

(S-Int) ∀Γ, Γ ′, Γ ′′ ∈ S, if Γ ≤ Γ ′ andΓ ′RAΓ
′′ thenΓRAΓ

′′

(S-UNIT) ∀Γ, Γ ′ ∈ S, if ΓRAΓ
′ thenΓ ≤ Γ ′.

(S-C) ∀Γ, Γ ′, Γ ′′ ∈ S, if ΓRAΓ
′, andΓ ′ ≤ Γ ′′, thenΓ ′′RAΓ

′′

(S-CA) ∀Γ, Γ ′ ∈ S, ΓRAΓ
′ orΓRBΓ

′, iff ΓRA∨BΓ
′

(S-Mon) ∀Γ, Γ ′ ∈ S, if ΓRA∧BΓ
′, thenΓRAΓ

′ andΓRBΓ
′

(S-DT) ∀Γ, Γ ′, Γ ′′ ∈ S, if ΓRAΓ
′ andΓ ′ ≤ Γ ′′, andΓ ′′ ∈ [|B|], thenΓRA∧BΓ

′′;
(S-ID) ∀Γ, Γ ′ ∈ S, if ΓRAΓ

′, thenΓ ′ ∈ [|A|]
(S-RCEA) ∀Γ, Γ ′ ∈ S, if ⊢ A↔ B, thenΓRAΓ

′ if and only if ΓRBΓ
′.

The proof is straightforward. As an example, let us prove (S-DT). We have to show that
if ΓRAΓ

′,Γ ′ ≤ Γ ′′, andΓ ′′ ∈ [|B|], thenΓRA∧BΓ
′′, i.e.{φ such thatA∧B saysφ ∈

Γ} ⊆ Γ ′′. For all suchφ, by (DT),A says(B → φ) ∈ Γ , hence by definition ofRA,
B → φ ∈ Γ ′, and by definition of≤, B → φ ∈ Γ ′′. Furthermore, alsoB ∈ Γ ′′ by
Lemma 3. By deductive closure ofΓ ′′, we conclude thatφ ∈ Γ ′′.

2

By the above lemmas, we can conclude that the axiomatizationof the logicCondACL given
in Section 2.1 is complete with respect to the semantics in Definition 1:

Theorem 3 (Completeness).Given a formulaϕ ∈ L, if |= ϕ, then⊢ ϕ.

Proof. For a contradiction, suppose6⊢ ϕ. Then by Lemma 1 there is a saturated exten-
sionΓ ∗ such thatΓ ∗ 6⊢ ϕ, henceϕ 6∈ Γ ∗. By Definition 4 and Lemmas 3 and 4, we
conclude that there is a (canonical) modelM = (S,≤, {RA}, h), with Γ ∗ ∈ S, such
thatM, Γ ∗ 6|= ϕ. It follows thatϕ is not logically valid, i.e.6|= ϕ.

2

4 A sequent calculus forCondACL

In this section we present a cut-free sequent calculus forCondACL . Our calculus is
called SCondACL and it makes use of labels to represent possible worlds, following the
line of SeqS, a sequent calculus for standard conditional logics introduced in [12]. The
completeness of the calculus is an immediate consequence ofthe admissibility of cut.

In addiction to the languageL of the logicCondACL , we consider a denumerable
alphabet of labelsA, whose elements are denoted byx, y, z, There are three types
of labelled formulas:

1. world formulas, denoted byx : α, wherex ∈ A andα ∈ L, used to represent that
the formulaα holds in a worldx;

85

Logics for Access Control: A Conditional Approach 9

2. transition formulas, denoted byx
A

−→ y, representing thatxRAy;
3. order formulasof the formy ≥ x representing the partial order relation≤.

A sequentis a pair〈Γ,∆〉, usually denoted withΓ ⇒ ∆, whereΓ and∆ are multisets
of labelled formulas. The intuitive meaning of a sequentΓ ⇒ ∆ is: every model that
satisfies all labelled formulas ofΓ in the respective worlds (specified by the labels)
satisfies at least one of the labelled formulas of∆ (in those worlds). This is made
precise by the notion ofvalidity of a sequent given in the next definition:

Definition 5 (Sequent validity). Given a modelM = (S,≤, {RA}, h) for L, and a
label alphabetA, we consider amappingI : A → S. LetF be a labelled formula, we
defineM |=I F as follows:

– M |=I x : α iff M, I(x) |= α

– M |=I x
A

−→ y iff I(x)RAI(y)
– M |=I y ≥ x iff I(x) ≤ I(y)

We say thatΓ ⇒ ∆ is valid in M if, for every mappingI : A → S, if M |=I F
for everyF ∈ Γ , thenM |=I G for someG ∈ ∆. We say thatΓ ⇒ ∆ is valid in
CondACL if it is valid in everyM.

In Figure 1 we present the rules of the calculusSCondACL for CondACL . As usual,
we say that a sequentΓ ⇒ ∆ is derivablein SCondACL if it admits aderivation. A
derivation is a tree whose nodes are sequents. A branch is a sequence of nodesΓ1 ⇒
∆1, Γ2 ⇒ ∆2, . . . , Γn ⇒ ∆n, . . . Each nodeΓi ⇒ ∆i is obtained from its immediate
successorΓi−1 ⇒ ∆i−1 by applyingbackwarda rule of SCondACL , havingΓi−1 ⇒
∆i−1 as the conclusion andΓi ⇒ ∆i as one of its premises. A branch is closed if one
of its nodes is an instance of axioms, namely(AX), (AX≥), and(AX⊥), otherwise it
is open. We say that a tree is closed if all its branches are closed. A sequentΓ ⇒ ∆ has
a derivation inSCondACL if there is a closed tree havingΓ ⇒ ∆ as a root.

The rule(EQ) is used in order to support the rule (RCEA): if a sequentΓ, x
A

−→ y ⇒

∆,x
B
−→ y has to be proved, then the calculusSCondACL checks whetherA andB are

equivalent, i.e.A↔ B. To this aim, the(EQ) rule introduces a branch in the backward
derivation, trying to find a proof for both sequentsu : A⇒ u : B andu : B ⇒ u : A.

As an example, in Figure 2 we show a derivation inSCondACL of an instance of the
axiom (UNIT). In order to show that the formulaα → (A saysα) is valid, we build a
derivation in SCondACL for the sequent⇒ u : α→ (A saysα).

As a further example, in Figure 3 we show a derivation inSCondACL of an instance
of the axiom (C).
The calculusSCondACL is sound and complete for the logicCondACL , that is to say a
formulaψ ∈ L is valid in CondACL if and only if the sequent⇒ u : ψ is derivable in
SCondACL . In order to prove this, we first need to show some basic structural properties
of the calculus. First, we introduce the notion of complexity of a labelled formula:

Definition 6 (Complexity of a labelled formula). We define the complexity of a la-

belled formulaF as follows: cp(x : ϕ) = 2 ∗ | ϕ |; cp (x
A
−→ y) = 2 ∗ | A | +1; cp

(y ≥ x) = 2, where| φ | is the number of symbols occurring in the string representing
the formulaφ.

86

10 V. Genovese, L. Giordano, V. Gliozzi, G.L. Pozzato

(AX) (AX⊥) (AX≥)Γ, x : ⊥ ⇒ ∆ Γ ⇒ ∆, x ≥ xΓ, F ⇒ ∆, F
F either x : P, P ∈ ATM or y ≥ x

P ∈ ATM

y and z new

(→ L)

y new

(→ R)

(says R) (says L)

(∧R) (∧L)

y new

(∨R) (∨L)

y new

(¬R) (¬L)

(Trans) (Unit)

y new

Γ, z ≥ y, y ≥ x ⇒ ∆

Γ, z ≥ x, z ≥ y, y ≥ x ⇒ ∆

Γ, x
A

−→ y ⇒ ∆

Γ, y ≥ x, x
A

−→ y ⇒ ∆

Γ, x : P ⇒ ∆

Γ, x : P ⇒ ∆, y ≥ x Γ, x : P, y : P ⇒ ∆
(ATM)

Γ, x
A

−→ y ⇒ ∆, x
B
−→ y

(EQ)

Γ, x : α → β ⇒ ∆

Γ, x : α → β ⇒ ∆, y ≥ x Γ, x : α → β ⇒ ∆, y : α Γ, x : α → β, y : β ⇒ ∆

Γ ⇒ ∆, x : α → β

Γ, y ≥ x, y : α ⇒ ∆, y : β

Γ ⇒ ∆, x : A says α

Γ, y ≥ x, y
A

−→ z ⇒ ∆, z : α

Γ, x : A says α ⇒ ∆

Γ, x : A says α ⇒ ∆, y ≥ x Γ, x : A says α ⇒ ∆, y
A

−→ z Γ, x : A says α, z : α ⇒ ∆

Γ, x : α ∧ β ⇒ ∆

Γ, x : α ∧ β ⇒ ∆, y ≥ x Γ, x : α ∧ β, y : α, y : β ⇒ ∆

Γ ⇒ ∆, x : α ∧ β

Γ, y ≥ x ⇒ ∆, y : α Γ, y ≥ x ⇒ ∆, y : β

Γ ⇒ ∆, x : α ∨ β

Γ, y ≥ x ⇒ ∆, y : α, y : β

Γ, x : α ∨ β ⇒ ∆

Γ, x : α ∨ β ⇒ ∆, y ≥ x Γ, x : α ∨ β, y : α ⇒ ∆ Γ, x : α ∨ β, y : β ⇒ ∆

Γ ⇒ ∆, x : ¬α

Γ, y ≥ x, y : α ⇒ ∆

Γ, x : ¬α ⇒ ∆

Γ, x : ¬α ⇒ ∆, y ≥ x Γ, x : ¬α ⇒ ∆, y : α

Γ, z ≥ y, x
A

−→ y ⇒ ∆

Γ, z ≥ y, x
A

−→ y, z
A

−→ z ⇒ ∆
(C) (CA)

(ID)

(DT) (MON)

(CA − conv)
Γ, x

A∨B
−→ y ⇒ ∆

Γ, x
A∨B
−→ y, x

A
−→ y ⇒ ∆ Γ, x

A∨B
−→ y, x

B
−→ y ⇒ ∆

Γ, x
A∧B
−→ y ⇒ ∆

Γ, x
A∧B
−→ y, x

A
−→ y, x

B
−→ y ⇒ ∆

u : B ⇒ u : Au : A ⇒ u : B Γ, x
A

−→ y, y : A ⇒ ∆

Γ, x
A

−→ y ⇒ ∆

Γ, x
A

−→ y ⇒ ∆

Γ, x
A

−→ y ⇒ ∆, z : BΓ, x
A

−→ y ⇒ ∆, z ≥ y

Γ, x
A

−→ y ⇒ ∆

Γ, x
A∨B
−→ y, x

A
−→ y ⇒ ∆

Γ, x
A

−→ y, x
A∧B
−→ z ⇒ ∆

Fig. 1. The sequent calculusSCondACL
.

The following properties hold inSCondACL :

Lemma 5 (Height-preserving admissibility of weakening).If a sequentΓ ⇒ ∆ has
a derivation of heighth, thenΓ ⇒ ∆,F andΓ, F ⇒ ∆ have a derivation of height
h′ ≤ h.

Lemma 6 (Height-preserving label substitution).If a sequentΓ ⇒ ∆ has a deriva-
tion of heighth, thenΓ [x/y] ⇒ ∆[x/y] has a derivation of heighth′ ≤ h, where
Γ [x/y] ⇒ ∆[x/y] is the sequent obtained fromΓ ⇒ ∆ by replacing all occurrences
of the labelx by the labely.

Lemma 7 (Height-preserving invertibility of rules). Let Γ ⇒ ∆ be an instance of
the conclusion of a rule R ofSCondACL , with R different from(EQ). If Γ ⇒ ∆ is
derivable, then the premise(s) of R is (are) derivable with aderivation of (at most) the
same height.

Lemma 8 (Height-preserving admissibility of contraction). If a sequentΓ ⇒ ∆,F, F
is derivable in SCondACL , then there is a derivation of no greater height ofΓ ⇒ ∆,F ,
and if a sequentΓ, F, F ⇒ ∆ is derivable inSCondACL , then there is a derivation of no
greater height ofΓ, F ⇒ ∆.

87

Logics for Access Control: A Conditional Approach 11

(AX)
. . . , z ≥ x ⇒ z : α, z ≥ x

(AX)
. . . , x : α, z : α ⇒ z : α

(ATM)
z ≥ x, z ≥ y, y ≥ x, x ≥ u, x : α, y

A
−→ z ⇒ z : α

(Trans)
z ≥ y, y ≥ x, x ≥ u, x : α, y

A
−→ z ⇒ z : α

(Unit)
y ≥ x, x ≥ u, x : α, y

A
−→ z ⇒ z : α

(saysR)
x ≥ u, x : α ⇒ x : A saysα

(→ R)
⇒ u : α → (A saysα)

Fig. 2. A derivation in SCondACL
for (UNIT).

(AX≥)
⇒ w ≥ w

(AX)
w

A
−→ w ⇒ w

A
−→ w

(AX)
w : α ⇒ w : α

(saysL)
w ≥ y, x ≥ u, x

A
−→ y, w

A
−→ w, w : A saysα ⇒ w : α

(C)
w ≥ y, x ≥ u, x

A
−→ y, w : A saysα ⇒ w : α

(→ R)
x ≥ u, x

A
−→ y ⇒ y : (A saysα) → α

(saysR)
⇒ u : A says((A saysα) → α)

Fig. 3. A derivation in SCondACL
for (C).

Lemma 9. A sequent⇒ x : A→ B is derivable inSCondACL if and only if the sequent
x : A⇒ x : B is derivable inSCondACL .

We now consider the cut rule:

Γ ⇒ ∆,F Γ, F ⇒ ∆
(cut)

Γ ⇒ ∆

whereF is any labelled formula. We prove that this rule is admissible in the calculus
SCondACL . The standard proof of admissibility of cut proceeds by a double induction
over the complexity ofF and the sum of the heights of the derivations of the two
premises of(cut), in the sense that we replace one cut by one or several cuts on formulas
of smaller complexity, or on sequents derived by shorter derivations. However, in our
calculusSCondACL the standard proof does not work in case the cutting formulaF is a

transition formulax
A

−→ y derived by an application of(EQ) in the left premise, and by
an application of one of the following rules:(C), (CA), (CA − conv), (DT), (MON)
in the right premise. In order to prove the admissibility of cut for SCondACL , we proceed

as follows. First of all, we represent withΓ [xi
A

−→ yi] ⇒ ∆[uj
A

−→ vj] a sequent
containingany number of transitions labelled with the formulaA; moreover, ifu :
A ⇒ u : A′ andu : A′ ⇒ u : A are derivable, we denote withΓ ⋆ ⇒ ∆⋆ the
sequent obtained by replacinganynumber of transitions labelled withA with the same

transitions labelled withA′ in Γ [xi
A

−→ yi] ⇒ ∆[uj
A

−→ vj]. We prove that cut is
admissible by “splitting” the notion of cut in two propositions:

88

12 V. Genovese, L. Giordano, V. Gliozzi, G.L. Pozzato

Theorem 4. In SCondACL , the following propositions hold:

– (A) If Γ ⇒ ∆,F andΓ, F ⇒ ∆ are derivable, so isΓ ⇒ ∆, i.e. the rule(cut) is
admissible inSCondACL ;

– (B) if (I) Γ [xi
A

−→ yi] ⇒ ∆[uj
A

−→ vj] is derivable with a derivation of heighth,
(II) u : A ⇒ A′ and (III) u : A′ ⇒ A are derivable, thenΓ ⋆ ⇒ ∆⋆ is derivable
with a derivation of heighth′ ≤ h.

Theorem 5 (Soundness ofSCondACL). If Γ ⇒ ∆ is derivable, thenΓ ⇒ ∆ is valid in
the sense of Definition 5.

Theorem 6 (Completeness ofSCondACL). If Γ ⇒ ∆ is valid in the sense of Definition
5, thenΓ ⇒ ∆ is derivable.

Completeness ofSCondACL with respect toCondACL models of Definition 1 immedi-
ately follows from the completeness of the axiomatization of CondACL with respect to
the semantics, shown in Theorem 3. We have that a formulaϕ ∈ L is valid if and only
if the sequent⇒ u : ϕ has a derivation inSCondACL .

5 Related Work

The formal study of properties of access control logics is a recent research trend. As
reported in [13], constructive logics are well suited for reasoning about authorization,
because constructive proofs preserve the justification of statements during reasoning
and, therefore, information about accountability is not lost. Classical logics, instead,
allows proofs that discard evidence. For example, we can proveG using a classical
logic by provingF → G and¬F → G, since from these theorems we can conclude
(F ∨ ¬F) → G, hence⊤ → G.

Abadi in [14] presents a formal study about connections between many possible
axiomatizations of the says, as well as higher-level policyconstructs such as delegation
(speaks-for) and control. Abadi provides a strong argumentto use constructivism in
logic for access control, in fact he shows that from a well-known axiom like Unit in a
classical logic we can deduceK saysϕ→ (ϕ ∨K saysψ). The axiom above is called
Escalationand it represents a rather degenerate interpretation of says, i.e., if a principal
saysϕ then, eitherϕ is permitted or the principal can sayanything. On the contrary, if
we interpret the says within an intuitionistic logic we can avoid Escalation.

Even if there exist several authorization logics that employ the says modality, a
limited amount of work has been done to study the formal logical properties of says,
speaks-for and other constructs. In the following, we report the three different ap-
proaches adopted to study access control logics themselves.

Garg and Abadi [15] translate existing access control logics into S4 by relying on a
slight simplification of Gödel’s translation from intuitionistic logic to S4, and extending
it to formulas of the formA saysϕ.

Garg [10] adopts an ad-hoc version of constructive S4 calledDTL0 and embeds
existing approaches into it. Constructive S4 has been chosen because of its intuitionis-
tic Kripke semantics which DTL0 extends by addingviews[10], i.e., a mapping from
worlds to sets of principals.

89

Logics for Access Control: A Conditional Approach 13

Boella et al. [8] define a logical framework called FSL5, based on Gabbay’s Fibring
semantics [16] by looking at says as a (fibred) modal operator.

However, adopting a fixed semantics like S4 does not permit tostudy thecorrespon-
dence theorybetween axioms of access control logics and Kripke structures. Suppose
we look at says as a principal indexed modality2K , if we rely on S4 we would have as
an axiom2Kϕ → ϕ, which means:everythingthatK says is permitted. To overcome
this problem, both in [10, 15], Kripke semantics is sweetened with the addition ofviews
which relativize the reasoning to a subset of worlds. Although this approach provides
sound and complete semantics, it breaks the useful bound between modal axioms and
semantic relations of Kripke structures.

6 Conclusion

We defined an intuitionistic conditional logic for Access Control calledCondACL .
The major contribution of our conditional approach w.r.t. works in [10, 15] is the

identification of canonical properties for axioms of the logic (in particular Unit and C),
i.e., first-order conditions on Kripke structures that arenecessaryandsufficientfor the
corresponding axiom to hold. In [8, 17, 18] we identify canonical properties for other
access control axioms (e.g., C4, speaks-for, hand-off6).

We believe that this methodology has several advantages. First, the formalization of
first-order constraints on Kripke structures shows that we do not need the full power and
complexity of second-order quantification, this result hasbeen proved for speaks-for re-
lationship in [15] but our approach also applies to all othersecond-order well-known
axioms for which we identify canonical properties. The factthat, from a semantic view-
point, modal logic axiom schemas are not really second-order is a well-known result of
modern modal logic and, by looking atsaysas a conditional modality, we managed to
apply the same methodology to access control logics.

Second, the identification of canonical properties for access control axioms provides
a natural deconstruction of access control logics. By deconstruction we intend the pos-
sibility to craft access control logics that adoptanycombination of axioms for which
there exists canonical properties. Garg and Abadi in [15] provide a translation into S4 of
an access control logic with Unit and C4, but they do not definethe semantic properties
of the axioms with respect to the view based semantics. This limits the flexibility of the
adopted semantics. For instance, although not all access control systems adopt Unit as
an axiom [4, 19, 3], the translation in [15] does not provide an embedding in S4 for an
access control logic without Unit. In particular, the approach in [15] does not provide
a general methodology to deconstruct access control logics. In our approach, instead,
we can formalize a logic and a calculus without Unit which is still sound and complete,
by dropping the semantic condition S-UNIT and the corresponding rule(Unit) in the
calculus.

In this work, we have proven that the axiomatization of the intuitionistic conditional
logic CondACL is sound and complete with respect to the semantics. Moreovoer, we

5 Fibred Security Language.
6 For a detailed discussion about these axioms see [14].

90

14 V. Genovese, L. Giordano, V. Gliozzi, G.L. Pozzato

have provided a cut-free, labelled, sequent calculus for this logic. In CondACL , prin-
cipals are defined as arbitrary formulas. The generality of the language makes it pos-
sible to formalize, for instance, the so called boolean principals [7], that is, principals
which are formed by boolean combinations of atomic principals. For the time being,
CondACL only includes few axioms of access control logics but it can be extended in
order to cope with richer axioms, as well as with the well known notion of “speaks
for”. We believe that choosing axioms for access control logics depends on the needs of
security practitioners. WithCondACL we show that, by looking atsaysas a conditional
modality, we can offer a formal framework to study axioms of access control via canon-
ical properties on the semantics and to build calculi to carry out automated deduction.
Other issues to be tackled are the complexity of the logicCondACL and the termination
and complexity of the sequent calculusSCondACL . This is what we plan to do for future
work.

Acknowledgements.The work has been partially supported by Regione Piemonte,
Project “ICT4Law -ICT Converging on Law: Next Generation Services for Citizens,
Enterprises, Public Administration and Policymakers”. Valerio Genovese is supported
by the National Research Fund, Luxembourg.

References

1. Abadi, M., Burrows, M., Lampson, B.W., Plotkin, G.D.: A calculus for access control in
distributed systems. In: CRYPTO 91. 1–23

2. Bertolissi, C., Fernández, M., Barker, S.: Dynamic event-based access control as term rewrit-
ing. In: DBSec07. 195–210

3. Gurevich, Y., Roy, A.: Operational semantics for DKAL: Application and analysis. In:
TrustBus 2009. 149–158

4. Lesniewski-Laas, C., Ford, B., Strauss, J., Morris, R., Kaashoek, M.F.: Alpaca: extensible
authorization for distributed services. In: Proc. of ACM CCS 2007. 432–444

5. Li, N., Grosof, B.N., Feigenbaum, J.: Delegation logic: Alogic-based approach to distributed
authorization. ACM Trans. Inf. Syst. Secur.6(1) (2003) 128–171

6. Abadi, M.: Variations in access control logic. In: DEON08. 96–109
7. Garg, D., Abadi, M.: A modal deconstruction of access control logics. In: FoSSaCS 08,

Budapest, Hungary 216–230
8. Boella, G., Gabbay, D., Genovese, V., van der Torre, L.: Fibred security language. Studia

Logica92(3) (2009) 395–436
9. Nute, D.: Topics in Conditional Logic. Reidel, Dordrecht(1980)

10. Garg, D.: Principal centric reasoning in constructive authorization logic. In: Informal Proc.
of IMLA. (2008)

11. Troelstra, A., van Dalen, D.: Constructivism in Mathematics: An Introduction. North-
Holland Publishing, Amsterdam

12. Olivetti, N., Pozzato, G.L., Schwind, C.B.: A Sequent Calculus and a Theorem Prover for
Standard Conditional Logics. ACM Transactions on Computational Logics8(4) (2007)

13. Garg, D., Pfenning, F.: Non-interference in constructive authorization logic. In: CSFW-19.
(2006) 283–296

14. Abadi, M.: Variations in access control logic. In: 9th International Conference on Deontic
Logic in Computer Science (DEON). (2008) 96–109

15. Garg, D., Abadi, M.: A modal deconstruction of access control logics. In: FoSSaCS 08,
Budapest, Hungary 216–230

91

Logics for Access Control: A Conditional Approach 15

16. Gabbay, D.M.: Fibring logics. Oxford University Press (1999)
17. Genovese, V., Giordano, L., Gliozzi, V., Pozzato, G.: A constructive conditional logic for

access control: a preliminary report. In: ECAI 2010 (to appear)
18. Modal Access Control Logic: Axiomatization, S., Proving, F.T.: D. m. gabbay and v. gen-

ovese and d. rispoli and l. van der torre. In: (to appear)
19. Becker, M.Y., Fournet, C., Gordon, A.D.: Design and semantics of a decentralized autho-

rization language. In: 20th IEEE Computer Security Foundations Symposium (CSF). (2007)
3–15

92

Networks of Trust and Distrust: Towards Logical
Reputation Systems

W. T. Harwood, J. A. Clark, J. L. Jacob

University of York
Department of Computer Science

Abstract. We introduce the notion of a network of trust and distrust
relations between individuals and take an argumentation approach to
the assessment of whether one individual should trust another.

. . . good decision is based on knowledge and not on numbers”

Plato - Early Dialogues - Laches

1 Introduction

This paper reports ongoing work in creating a logical foundation for reasoning
about trust and trustworthiness in networks of individuals that may recom-
mend one another as trustworthy or untrustworthy. One solution is to adopt
some form of voting or counting scheme as in commonly done in reputa-
tions systems [10]. But in many circumstances, when the stakes are sufficiently
high, e.g. deciding to trust a root certificate or disclose confidential informa-
tion, weight of numbers does not constitute a good argument. As Plato puts it
". . . good decision is based on knowledge and not on numbers"1.

One of the ultimate goals of this work is to provide the foundations for a
logically well founded trust management system, or Logical Reputation System,
where ‘reputation’ is computed by maintaining some notion of consistency
between trust assertions made by trusted individuals. This approach contrasts

1 For those without a classical education, or more relevantly today, an Internet con-
nection, this is part of a general argument that Plato directs against amalgamating
opinions as a basis for reaching a good decision. This is actually a cornerstone of
Plato’s arguments against democracy. Today we take a more liberal view and re-
gard some decisions as being appropriately arrived at by amalgamating individual
opinions (such as who should rule the country, or what colour should we paint the
school) and other decisions as arrived at by knowledge. It is certainly the contention
of this paper that trust is best arrived at through knowledge rather than opinion.

93

2

with trust models, such as those of Coleman[6] or Marsh[12], that appeal to
probabilities of trustworthiness or any similar numeric notions of degree of
trustworthiness. Rather, in the approach considered here, a trust judgment is a
purely logical resolution of possibly conflicting trust arguments. The intent is
to use such a system to automatically make trust judgements in social network
applications based on relational information gathered from users. This paper
aims at setting out a logical framework based on argumentation theory to
achieve this goal.

Our starting point is to consider networks of individuals that assert that
they trust some individuals and distrust others.

Trust and distrust2 are statements about the relationship between two in-
dividuals in relation to some action, such as, information disclosure, that holds
in some context, such as, today, in this building (see, for example, Hardin’s dis-
cussion in [9]). Throughout this paper we will consider the action and context
as fixed so that we may talk of trust and distrust as binary relations. It should
be apparent that we can put the additional dimensions back into the picture
by considering families of relations parameterized by action and context.

If we only had information to the effect that certain individuals were trust-
worthy we would have a web of trust model (see, e.g. Zimmermann [13]) in
which one individual trusts another if there is a trusted path between them.
Here we consider how such models may be extended in the presence of ad-
ditional negative assertions to the effect that certain individuals distrust one
another. This allows the possibility of a trust path being undermined by a
distrust path. Here we present a model of such systems in three stages of in-
creasing complexity.

The first stage, simple trust systems, captures the idea that an individual
trusts another if there is a trust path between them that is not undermined by
distrust. Simple trust systems are modeled after argumentation theory[3, 4, 7].
Essentially, the approach is to assess the soundness of the argument that an
individual, x0 say, can trust an individual xn. In our case the argument for
trust is the existence of a trust path between x0 and xn in a network of trust
relations. However, this argument may be undermined by an attack on it. An
attack is an argument that some link in the chain of trust from x0 to xn is
untrustworthy. In our case, such an argument is the existence of a path of
trust from x0 to some node ym such that ym distrusts some node connecting x0
and xn (including xn itself). The existence of such an attack would make the
original argument unsound, unless, of course, the attack itself was attacked in
a similar manner, etc. etc.

2 The relationship between trust and distrust is far from uncontroversial, see, for ex-
ample, the discussions in the collection of articles [8]. We take distrust as more than
the mere absence of trust. That is, distrust is not simply the complement of trust.
Rather, trust and distrust are two relations that can exist between individuals and it
is even possible for an individual to trust and distrust another individual simultane-
ously about the same topic. In such cases, although the individual is conflicted about
trust, they are not logically inconsistent about trust.

94

3

The argumentation theory approach to resolving the set of attacks and
counterattacks is to say that the original argument is sound if it is possible
to partition the set, S, containing the original argument and the closure of all
the attacks and counter attacks possible based on the initial argument, into
two distinct sets, which we call S+ and S−, such that: S+ is consistent in that
no paths in S+ attack one another; S+ contains the original trust path; and for
every path in S− that attacks a path in S+, S+ contains a path that counter
attacks that path.

Although formally straightforward, simple trust systems fail to capture
an important aspect of trust: that when faced with a choice over conflicting
recommendations of who to trust we have preferences over the choices. This
leads to the formulation of the second stage, preferential trust systems, which
introduces the notion that individuals may rank the other individuals into a
partial ordering indicating their relative efficacy at making trust or distrust
recommendations. This relative ranking is then extended to a partial order on
paths which is used to measure the relative strength of paths. A distrust path
can only undermine another path if it is sufficiently strong when compared to
the path it is attacking (up to the point of attack). This second form of system
is formalized by revising the notion of attack between paths.

The final stage asymmetric preferential trust systems addresses the fact that, in
many situations, individuals have an asymmetric attitude to trust and distrust
in that they are more willing to accept an argument that leads them to distrust
than they are to accept one that leads them to trust. In the approach considered
here, individuals require stronger arguments to make them trust than they do
to make them distrust.

In order to directly describe the relationship between individuals, individ-
uals’ efficacy assessments, trust paths and distrust paths, trust systems are
described relatively concretely. Of course these systems may be considered
more abstractly using Dung’s abstract argumentation systems framework. The
connection between trust systems and Dung’s framework is sketched in sec-
tion 7.

2 Trust Systems

First we set out the framework of trust systems that we use throughout the
paper.

A trust system is a collection of individuals I each of which may as-
sert some collection of propositions, Pi for i ∈ I, and two binary relations
Trust : I ⇔ I and Distrust : I ⇔ I. If an individual, say x0, trusts another
individual, say xn, then x0 accepts Pn as true. If however x0 distrusts xn then
x0 neither accepts Pn as true nor rejects P0 as false.

Informally, a trust system is a collection of individuals each of which may
make assertions about the state of the world. In particular, each individual
may assert whether or not they regard some other individuals as trustworthy
or untrustworthy. If an individual i regards an individual j as trustworthy we

95

4

will say that i trusts j. If, on the other hand, i regards j as untrustworthy we
will say that i distrusts j. It is also possible for i to neither trust nor distrust
j. If i trusts j then i is willing to accept j’s assertions as true. In particular i
accepts j’s assertions about the trustworthiness of others as true. If i accepts a
trust assertion of j as true e.g. if j trusts k, then i accepts there is an argument
for trusting k, specifically i trusts j and j trusts k. If, however, j distrusts k then
i accepts there is an argument that k is untrustworthy i.e. j whose assertions i
trusts, distrusts k. It should be clear at this point that trust arguments can be
extended (i.e. if i trusts j, j trusts k and k trusts l, then there is an argument
for i trusting l) but distrust arguments cannot (i.e. if i trusts j, j distrusts k and
k trusts l, then, since j does not accept k’s assertions there is neither a trust
argument nor a distrust argument, derivable from these facts alone, linking i
and l).

Formally a trust system is a collection of individuals I and two binary
relations Trust : I ⇔ I and Distrust : I ⇔ I. Arguments for the trustwor-
thiness and untrustworthiness of individuals will be modeled as trust paths
and distrust paths between individuals. A trust path from x0 to xn is a se-
quence <x0, x1, . . . , xn−1, xn> such that every pair (xi, xi+1) is in Trust. A dis-
trust path from x0 to xn is a sequence <x0, x1, . . . , xn−1, xn> such that every pair
(xi, xi+1) for i < n− 1 is in Trust and (xn−1, xn) is in Distrust. That is, the path
<x0, x1, . . . , xn−1> is a trust path and the final step <xn−1, xn> is distrusting.

The set of trust paths will be called TP and the set of distrust paths will be
called DP.

Given a path, p, (either a trust path or a distrust path) then range p is the set
of all individuals in the path i.e. if p = <x0, . . . , xn> then range p = {x0, . . . , xn}.
We will also say that first p = x0 and last p = xn, and, for later use, front p =
<x0, . . . , xn−1>.

A distrust path, q, attacks a path if it attacks the trust supporting the path,
meaning it either attacks any point of a trust path (including its last node) or
it attacks any point on the front of a distrust path (i.e. the trust path part of
the distrust path).

Let tr p be the trust part of a path p, defined by

tr p =

{
p if p ∈ TP
front p if p ∈ DP

Then attacks relation between paths is defined by:

q attacks p ≡ q ∈ DP ∧ first(q) = first(p) ∧ last(q) ∈ range(tr p)

An attack is admissible if it satisfies an admissibility condition that varies be-
tween the three forms of trust system considered. For simple trust systems all
attacks are admissible. For preferential trust systems an attack is admissible
only if it is of adequate strength. For asymmetric trust systems the strength
condition varies depending on the way the attack will affect the overall out-
come. The following section illustrates the effect of the different admissibility
conditions with a short example.

96

5

3 A Short Example

To illustrate the three systems consider the following network of trust and
distrust.

– Alice trusts Bob,
– Bob trusts Carol,
– Carol trusts Dan,
– Dan distrusts Bob,
– Alice trusts Elizabeth,
– Elizabeth distrusts Dan.
– Does Alice trust Carol?

Under simple trust systems, where we have no other information, Dan’s
distrust of Bob defeats the chain of trust connecting Alice and Carol but Eliz-
abeth’s attack on Dan defeats it, and so cancels its effect, leaving Alice having
trust in Carol.

If additionally we know:

– Alice rates herself, Bob and Carol strictly higher in ability to make trust
judgements than she does Dan.

Then, under a preferential trust system, Alice will trust Carol because Dan’s
distrust of Bob will lead to an attack path that is weaker than the trust path
between Alice and Carol. If, however,

– Alice rates herself, Bob, Carol and Dan equally in ability to make trust
judgements

then we would need to consider the exact formulation of the preference sys-
tem: does an attack from a path of equally strength defeat the attacked path
or not? Below we differentiate between conservative systems in which attacks
must be strictly stronger to defeat a path and paranoid systems in which attacks
from paths of equal strength, or attacks from incomparable paths, can defeat
the attacked path.

Finally, to illustrate asymmetric trust systems, which are conservative if the
consequence is trust and paranoid if the consequence is distrust, we consider
two situations

1. Alice rates everyone equally in their ability to make judgements.
2. Alice rates Elizabeth higher than everyone else in her ability to make trust

judgements.

Under assumption 1, Dan’s distrust of Bob will lead to Alice not trusting
Carol even though Elizabeth distrusts Dan, because the distrusting outcome is
favored over the trusting outcome. Whereas under assumption 2, Elizabeth’s
distrust of Bob can cancel the attack and lead to Alice having trust in Carol.

The rest of the paper provides the technical details of each of the systems.

97

6

4 Simple Trust Systems

As mentioned above, in simple trust systems all attacks are admissible.
We wish to define notion of a sound trust path, p, between two individuals

as a path which is either not attacked or only attacked by distrust paths that
are themselves defeated by other attacks. To do this we first define the attack
closure set of the path p to be pa , the least set closed under:

– p ∈ pa,
– q ∈ pa and r ∈ attacks(q) =⇒ r ∈ pa.

and say p is sound if and only if pa can be partitioned into two sets S+ and
S− such that:

– p ∈ S+,
– S+ is consistent in that no path in S+ attacks any other path in S+, i.e.

S+ ∩ attacks∃(S+) = ∅,
– S+ defends itself against S− in that every path in S− that attacks a path in

S+ is itself attacked by a path in S+, i.e.
^

attacks ∃(S+) ⊆ attacks∃(S+).

where, for a relation R, R∃X is the forward image of X under R i.e. {y|∃x ∈ S.xRy}.
We will call a set, S, a support, if it is consistent and defends itself (i.e. it can

support some trust path p).
We say an individual x0 trusts an individual xn iff3 there is a sound trust

path between x0 and xn.
Given a simple trust system T = (I, {Pi}i∈I , Trust, Distrust) its set of sound

trust paths (STP) is defined by:

STP = {(x0, xn) ∈ I × I | ∃p ∈ TP. f irst(p) = x0 ∧ last(p) = xn ∧ sound(p)}

Two simple trust systems S and T are trust equivalent iff they have the same
set of individuals and the same set of sound trust paths.

5 Preferential Trust Systems

Preferential trust systems restrict admissible attacks using a notion of rela-
tive strength between the attacked path and the attacking path. The particular
notion that we use is that the strength of the path is derived from the com-
petence, trustworthiness or reliability of the individuals in the path in making
judgments about other individuals. We will settle on the neutral term efficacy
for any of the terms competence, trustworthiness or reliability (or any other
such notion).

In the above, all individuals have been regarded as of equal efficacy in
rating the trustworthiness of other individuals. We will now consider what

3 Here, and throughout, we will adopt the convention of writing iff for if and only if.

98

7

happens when individuals are partially ordered by their efficacy in perform-
ing such rating. We will assume every individual i has available their own
assessment of the relative efficacy of all other individuals at rating the trust-
worthiness of others. Formally we take this to be a family of partial orders
(reflexive, anti-symmetric and transitive binary relations) over the set of indi-
viduals I, one for each member i ∈ I, denoted �i reflecting i’s view of the
relative efficacy of individuals. Our goal is that, given a path p which is at-
tacked by a path q, we wish to compare the strength of p up to the point of
the attack, last(q), with the strength of q. To do this we need to derive a partial
ordering of paths from the partial ordering of the efficacy of the individuals in
the paths.

We will call the segment of the path p up to the attack, p |last(q). If we
were to use a strict total ordering to compare paths then we would say that
one path, say q, was weaker than another, say p, when range(q) contained an
element less than any element in range(p). We generalize this idea to partial
orders by considering minimal elements in the ranges of the paths.

First we define an extension of a partial order over a set to a partial order
over subsets of that set.

Given a partial order, �, over a set S, we say that a subsets P and Q of S
are comparable4, written P ∼ Q iff:

(∀x ∈ P. ∃y ∈ Q. x � y) ∨ (∀y ∈ Q. ∃x ∈ P. x � y)

The set of minimal elements of a set P i s defined as:

minimal(P) = {x ∈ P | ∀y ∈ P. (y � x) =⇒ y = x}

A set, P ⊆ S, is at-least-as-strong-as a set, Q ⊆ S, written P w Q, iff

P ∼ Q ∧ ∀x ∈ minimal(P). ∃y ∈ minimal(Q). x � y

A set P subset of S is stronger than a set Q subset of S, written P A Q, iff

P w Q ∧Q 6w P

All this amounts to is that subsets are ordered by comparing the least ele-
ments of the chains and if one of the subsets has strictly smaller elements for
any of its chains (and the other does not) then it is the smaller set.

A path p is stronger than q, also written p A q, iff

f irst(p) = f irst(q) ∧ last(p) = last(q) ∧
range(p) \ {last(p)} A range(q) \ {last(q)}

The removal of the last elements of the paths is due to the fact that we
derive the efficacy of the individuals on the path that make the trust recom-
mendations.
4 Warning: For those familiar with the notation x || y for x incomparable with y under

the partial order �. The notion defined here is over subsets of the ordering, not
elements of the ordering. So P ∼ Q ≡ ∃p ∈ P, q ∈ Q.¬(p || q).

99

8

We now modify the definition of attack to take account of the relative
strength of paths. There are two possible views of relative strength that cor-
respond to whether the individual x0 takes a conservative or a paranoid stance
with respect to attacks. If x0 takes a conservative stance, then a path is only
defeated by a strictly stronger attack. If, on the other hand, x0 takes a para-
noid stance, then a path is defeated if the attacking path is incomparable or
is at-least-as-strong-as the attacked path. The paranoid position allows attacks
to defeat other attacks if x0 is not in a position to positively assert that the
attacked path is the stronger of the two.

That is, if x0 has a conservative stance, then an attack, q, on a path, p, only
succeeds if q A p |last(q):

q attacksC p ≡ q ∈ DP ∧ f irst(q) = f irst(p) ∧ last(q) ∈ range p ∧ q A p |last(q)

and if x0 has a paranoid stance, then an attack, q, on a path, p, only succeeds
if p |last(q) 6A q:

q attacksP p ≡ q ∈ DP ∧ f irst(q) = f irst(p) ∧ last(q) ∈ range p ∧ p |last(q) 6A q

Preferential trust systems are formulated by replacing the definition of at-
tack in simple trust systems with either the conservative or the paranoid defi-
nition of attack5.

6 Asymmetric Preferential Trust Systems

In practice individuals are often asymmetric in their attitude to trust and dis-
trust. That is, they are paranoid about trust and conservative about distrust.
This means that the admissibility of an attack changes according to the overall
role it plays in determining the outcome, introducing an asymmetry between
paths which ultimately lead to a trust decision and paths which ultimately lead
to a distrust decsion. We capture this asymmetry by redefining the conditions
for forming S and forming the partitions S+ and S−:

– The attack closure set S is the least closed set of paranoid attacks based on
a trust path p as above.

– S+ is restricted to only containing the initial trust path, p, and conservative
attacks.

– Since conservative attacks are a subset of paranoid attacks, S− may contain
both types of attack.

Trust path p is sound iff it is possible to form a partition of S such that:

5 A system may also be formulated where the stance varies from individual to indi-
vidual which is essentially a simple trust system with an indexed family of attacks
operators.

100

9

– p ∈ S+.
– S+ is consistent in that no path in S+ attacks any other path in S+.
– S+ is conservative in that every path in S+ is either p or a member of

attacksC(x) for some x.
– S+ defends itself against S− in that every path in S− that attacks a path in

S+ is itself attacked by a path in S+.

7 Connecting Trust and Dung’s Abstract Argumentation

Dung [7] defines an abstract argumentation system as a pair (AR, Attacks)
where AR is a set of arguments and Attacks is a binary relation over AR called
the attacks relation. We write x Attacks y for x attacks y. A set, S ⊆ D, at-
tacks an argument, x ∈ D, if some argument in S attacks x (we will say that
S ATTACKS x for ∃y ∈ S. y Attacks x).

Dung then goes on to define the notions of:

– Conflict free: A set of arguments S ⊆ AR is conflict free iff there is no pair of
arguments x ∈ S and y ∈ S such that x Attacks y.

– Acceptable: An argument x ∈ AR is acceptable with respect to S iff for every
argument y ∈ AR if y Attacks x then S ATTACKS y. Following [2] we will
also say that S defends x when x is acceptable with respect to S.

– Admissible: A set S ⊆ AR is admissible iff S is conflict free and each argument
in S is acceptable with respect to S.

Dung then goes on to discuss various notions of semantics that further
restrict the notion of admissibility which are not used in our current semantics.

To translate the above into Dung’s framework we consider an individual a
and the set of trust paths, P, rooted at a. For the simple trust systems:

– The set of arguments AR is the set P.
– The attacks relation between holds q, p ∈ P, i.e. q Attacks p, iff there exists

a distrust path d = <x0, x1, . . . , xn−1, xn> with q = <x0, x1, . . . , xn−1> and
d attacks p.

Note that this definition of Attacks loses information by conflating multiple
distinct attacks from q to different points on p.

A path p is soundD iff P can be partitioned into two sets S+ and S− such
that p ∈ S+ and S+ is admissible.

Clearly the above notions of consistency and conflict freeness are the same
(albeit on different domains):

Proposition 1. S ∩ R∃(S) = ∅ ≡ S ⊆ R∃(S)

Likewise, S defends itself and S is acceptable are essentially the same as
demonstrated by the following two propositions.

First we introduce the dual of the forward image operator on binary rela-
tions over a set S: Given a binary relation R : S↔ S, the function R∀ : PS→ PS
is defined by:

101

10

R∀Y = {x | ∀y.xRy =⇒ y ∈ Y}

R∃X is the forward image of X and R∀Y is the set of elements in the inverse
image of R that only result in elements in Y. 6.

R∃ and R∀ form a (covariant) galois connection, or axiality, over S. This
means that R∃ ◦R∀ is an interior operator on S and R∀ ◦R∃ is a closure operator

on S. Letting
^
R represent the converse of R (i.e. x

^
R y ≡ yRx) then

Proposition 2. S is acceptable iff S ⊆ (
^

Attacks)∀(Attacks∃(S))

Proof Sketch. This follows from R∀X = (
^
R)∃(X) and Amgoud & Cayrol’s the-

orem, quoted in [2], which rendered in our notation is S is acceptable iff : S is

acceptable iff S ⊆ Attacks∃(Attacks∃S).

Proposition 3. S is acceptable iff (
^

Attacks)∃S ⊆ Attacks∃S

Proof Sketch.

=⇒
S ⊆ (

^
Attacks)∀(Attacks∃(S))

by proposition 2

(
^

Attacks)∃S ⊆ (
^

Attacks)∃((
^

Attacks)∀(Attacks∃(S)))

by (
^

Attacks)∃ preserves order

(
^

Attacks)∃S ⊆ Attacks∃(S)

by (
^

Attacks)∃ ◦ (
^

Attacks)∀ being an interior operator
⇐=
(

^
Attacks)∀((

^
Attacks)∃S) ⊆ (

^
Attacks)∀(Attacks∃S)

by (
^

Attacks)∀ preserves order

S ⊆ (
^

Attacks)∀(Attacks∃S)

by (
^

Attacks)∀ ◦ (
^

Attacks)∃ being an closure operator

Proposition 4. soundD(p) ≡ sound(p)

Proof Sketch. Since the definitions of S being a support and S being admis-
sible are essentially the same between the two definitions of soundness, the
major work falls on showing that the existence of a suitable partition of pa is
equivalent to the existence of a suitable partition of P.

6 R∀Y is closely related to the weakest precondition operator in programming lan-
guages semantics. The exact relation depending on the particular relational theory
of programs and termination used.

102

11

Recall

tr(p) =
{

p if p ∈ TP
front(p) if p ∈ DP

Let p be a trust path, then tr∃(pa) ⊆ P. Assume the pair S+, S− form
a suitable partition of pa then the pair tr∃(S+), P \ tr∃(S+) form a suitable
partition of P.

Conversely, if the pair S+, S− form a suitable partition of P then the pair
^
tr ∃(S+) ∩ pa, pa \ (

^
tr ∃(S+) ∩ pa) form a suitable partition of pa.

To obtain the corresponding Dungian systems for preferential and asym-
metric trust systems we modify the definition of the Attacks relation. Given
the conflating of attacks mentioned above we must ensure that the potential
multiplicity of attacks is correctly dealt with when comparing strength.

For two paths p, q ∈ P such that q Attacks p we define:

q AC p ≡ ∀x ∈ range(p).(last(q), x) ∈ Distrust =⇒ q A p|x

q AP p ≡ ∀x ∈ range(p).(last(q), x) ∈ Distrust =⇒ p|x 6A q

And given a partition of P into S and S (= P \ S):

AS
A≡ ((S× S)∩ AC) ∪ ((S× S)∩ AP)

Using these orderings we define the three corresponding attacks relations
as:

– Conservative Preferential Trust: AttacksC = Attacks ∩ AC.
– Paranoid Preferential Trust: AttacksP = Attacks ∩ AP.
– Asymmetric Trust: AttacksS

A = Attacks ∩ AS
A.

Finally we demonstrate that the asymmetric trust systems have a pleas-
ing simplification of the acceptability condition in that AttacksA factors into
AttacksP and AttacksC on either side of the acceptability condition.

Proposition 5. AttacksS
A = ((S× S) ∩AttacksC) ∪ ((S× S) ∩AttacksP)

Proof Sketch. by boolean algebra

Proposition 6. An set, S, is acceptable in the asymmetric trust system iff (
^

AttacksP)
∃S

⊆ (AttacksC)
∃S

103

12

Proof Sketch.

(
^

AttacksS
P)
∃S ⊆ AttacksS

C
∃S

by proposition 2

(
^

((S× S) ∩AttacksC) ∪ ((S× S) ∩AttacksP)
∃)S ⊆

(((S× S) ∩AttacksC) ∪ ((S× S) ∩AttacksP)
∃)S

by proposition 5
^

((S× S) ∩AttacksC)
∃S ∪

^

((S× S) ∩AttacksP)
∃S ⊆

((S× S) ∩AttacksC)
∃S ∪ ((S× S) ∩AttacksP)

∃S
by distribute (_)∃ over union

(
^

AttacksP)
∃S ⊆ (AttacksC)

∃

by domain restrictions

8 Conclusions

For us at least, the idea of using argumentation to reason about networks
of trust, and distrust, is in its infancy. The work presented here raises more
questions than it answers, some of which we raise below (and there are many
more than raised here).

Trust systems as outlined above offer a logically well founded approach to
reasoning about trust based on minimal information gathered from individu-
als i.e. the individuals relative assessment of the efficacy of the judgements of
others and a map of immediate trust and distrust relations between individ-
uals. The natural next step is to investigate this in practice in an actual social
network application.

The asymmetric preferential trust systems above rely on the fact that con-
servative attacks are a subset of paranoid attacks. Clearly it is possible to gen-
eralize further and define relevant attacks and acceptable rebuttals to relevant
attacks. Given a set of attacks, we classify some attacks as relevant, some as
acceptable rebuttals of relevant attacks, and some as neither. S is built as the
closure of attacks on a trust path p as above and we define S+ and S− by:

– p ∈ S+,
– S+ is consistent in that no path in S+ attacks any other path in S+,
– S+ is a rebuttal set in that every path in S+ is either p or a rebuttal attack,
– S+ defends against relevant attacks from S− in that every relevant attack in

S− that attacks a path in S+ is itself attacked by a path in S+.

This generalization opens up the possibility of considering richer asymme-
tries between trust and distrust arguments. For example, if we drop the use
of the extended order relation and consider using a labeling of the individu-
als in paths. Consider, as illustration, a sensor network based on three kinds
of individual sensor: electronic sensing and people that perform either casual
or detailed inspections. We may trust an individual because we have a mixed

104

13

trust path to it but relevant attacks may be limited to chains that exclude elec-
tronic sensors and rebuttals may be limited to chains of people who perform
detailed inspection7. This approach will be the subject of further investigation.

The relation to Dungian argumentation outlined in section 7 uses only the
most basic semantic notion of admissibility. This raises the question whether or
not the other possible semantics have a useful meaning for trust (and distrust)
relations. The question is why we would want a richer set of arguments than
that required to support the sounds of a particular trust path? Perhaps there is
a useful notion of sets of individuals you can consistently trust corresponding
to the other possible semantics. It certainly is worth investigating.

During the revision of this paper the authors encountered the work of Cay-
rol and Lagasquie-Schiex on Bipolar Argumentation [5] systems, and of Kaci
and Torre , and Amgoud, Dimopoulos and Moraitis Preference Based Argu-
mentation (se e.g. [11] and [1] respectively). Both seem to overlap on the intent
pursued here and offer interesting directions for future investigation.

9 Acknowledgements

The authors would like to thank the reviewers for their constructive criticism,
knowledgeable comments and insightful questions. In particular we would
like to thank two of the reviews for their detailed comments and references
to the work of other authors. This latter has been particularly useful to the
ongoing work, even though not adequately reflected in this paper. In addition
to minor corrections of the text the comments have been addressed with addi-
tional footnotes and the addition of Section 7 (in response to the reviewer plea
for more mathematics).

7 Admittedly, this example can be done using order relations, but it is seems concep-
tional simpler as a predicate on the acceptable sets of attacks and counter attacks.

105

Bibliography

[1] Leila Amgoud, Yannis Dimopoulos, and Pavlos Moraitis. Making deci-
sions through preference-based argumentation. In Gerhard Brewka and
Jérôme Lang, editors, KR, pages 113–123. AAAI Press, 2008.

[2] Philippe Besnard and Sylvie Doutre. Characterization of semantics for
argument systems. In Didier Dubois, Christopher A. Welty, and Mary-
Anne Williams, editors, KR, pages 183–193. AAAI Press, 2004.

[3] Philippe Besnard and Anthony Hunter. Elements of Argumentation. MIT
Press, 2008.

[4] A. Bondarenko, P.M. Dung, R.A. Kowalski, and F. Toni. An abstract,
argumentation-theoretic approach to default reasoning. Artificial Intelli-
gence, 93:63–101, 1997.

[5] Claudette Cayrol and Marie-Christine Lagasquie-Schiex. On the accept-
ability of arguments in bipolar argumentation frameworks. In Lluis Godo,
editor, ECSQARU, volume 3571 of Lecture Notes in Computer Science, pages
378–389. Springer, 2005.

[6] James Coleman. Foundations of Social theory. Belknap Press, 1990.
[7] Phan Minh Dung. On the acceptability of arguments and its fundamental

role in nonmonotonic reasoning, logic programming and n-person games.
Artificial Intelligence, 77(2):321–357, 1995.

[8] Russell Hardin, editor. Trust & Distrust. Russell Sage Foundation, 2004.
[9] Russell Hardin. Trust. Polity Press, 2006.

[10] Audun Jøsang, Roslan Ismail, and Colin Boyd. A survey of trust and
reputation systems for online service provision. Decision Support Systems,
43(2):618–644, 2007.

[11] Souhila Kaci and Leendert van der Torre. Preference-based argumen-
tation: Arguments supporting multiple values. Int. J. Approx. Reasoning,
48(3):730–751, 2008.

[12] Stephen Paul Marsh. Formalising Trust as a Computational Concept. PhD
thesis, Dept. of Computing and Mathematics, University of Stirling, 1994.

[13] Phil Zimmermann. PGP User Guide. MIT Press, 1994.

106

Dynamic languages of propositional control
for protocol specification

Andreas Herzig1 and Nicolas Troquard2

1. Université de Toulouse, CNRS, IRIT, France
2. Department of Computer Science, University of Liverpool, UK

Abstract. We propose a family of dynamic logics of propositional control. They
extend classical propositional logic by a variety of modal operators of assignment,
and modal operators of transfer of control over a propositional variable. We also
present an extension with operators of knowledge. We essentially focus on their
formal properties, stating their complexity and their proof theory.

1 Introduction

The logic of propositional control CL-PC was introduced in [10] as a reconstruction of
coalition logic. What agents can achieve is explained there in terms of their control over

propositional variables. The central construction is a modal operator 〈
J
←〉 of contingent

ability, where J is a set of agents.1 The formula 〈
J
←〉ϕ reads “the coalition of agents J

can assign truth values to the variables under its control in such a way as to make ϕ

true”. For example, 〈
{i}
←〉q ∧ 〈

{i}
←〉¬q expresses that agent i is able both to make q true

and to make q false; which means that agent i controls q.
The logic was further studied and extended in [7, 15, 14, 13]. A particularly inter-

esting such extension is that by delegation CL-PC, coined δCL-PC; see [8] for a recent
presentation.2 It introduces into CL-PC new modalities of control transfer (baptized
‘delegation’ in the original papers). In that work, atomic delegation programs take the
form i

q
↪→j, whose intended meaning is that i who currently controls q turns over its

control to j. Moreover, complex control transfer programs δ are constructed by means
of the standard PDL constructs ? (test), ; (sequential composition), ∪ (nondeterministic
composition) and ∗ (iteration). The modal formula 〈δ〉ϕ then reads “there exists a com-
putation of the delegation program δ, starting from the current situation, such that after
δ has terminated ϕ holds”. Such constructs allow to talk about interaction protocols.

The semantics of CL-PC and δCL-PC are originally in terms of couples (ξ, θ) where
θ maps every propositional variable q to a truth value θ(q) in {tt,ff}, and ξ maps every
propositional variable q to one agent. We will here consider a more general setting (to
be introduced in Section 2), where ξ maps every propositional variable q to a —possibly

1 The original notation is ^Jϕ instead of 〈
J
←〉ϕ.

2 It was originally abbreviated DCL-PC, but we changed it in order to avoid confusion with the
logics we introduce here. In these logics (and more generally in dynamic epistemic logics [5])
the letter ‘D’ stands for ‘dynamic’.

107

empty— set of agents ξ(q). We call the mapping ξ a control allocation and the mapping
θ a valuation. ξ is about control, while θ is about truth. Given (ξ, θ), call an update of
J’s part of θ any model (ξ′, θ′) such that ξ′ = ξ and θ′(q) = θ(q) for every q such that
ξ(q) is not in J.

In addition to generalising the models of CL-PC, our main objective is to elaborate
on the basic bricks3 of the language. Indeed, in much the same spirit as the program

i
q
↪→j updates the allocation function ξ, one may view the operator 〈

J
←〉 of CL-PC as the

application of a program
J
← that updates the valuation function θ by changing at most

the value of the propositions under the control of the agents in J.
This observation made, one of the main contributions of this paper is to show that

we can redefine the logics of CL-PC and δCL-PC from a dynamic logic with very
simple programs. Our logic DLPC (that we introduce in Section 3) makes use of four
types of atomic programs:

q←> : q is given the value tt
q←⊥ : q is given the value ff

i
q
↪→ : i loses the control of q
q
↪→i : i receives the control of q

We keep track of who owns a propositional variable by the use of a theory of propo-
sitions ci,q, for every agent i and proposition q, that reads that i controls q. For instance,

the δCL-PC program i
q
↪→j will then be simulated by a test of ci,q followed by i’s loss

and j’s gain of control over q.
In Section 4 we introduce two new primitive programs to obtain a logic that we call

Q-DLPC, for quantified DLPC. The program
q
↪→J gives the control of q to one of the

agents in J, and the program q
J
← sets the value of q that is controlled by some agent in

J to tt or ff. These programs may look a bit abstract. They can in fact be defined in
terms of the four programs listed above as we will see, but to the price of losing a bit
of succinctness. Moreover, they will provide the good level of abstraction to relate our
languages with those of CL-PC and Coalition Logic.

Here is an example illustrating the concepts that we have introduced so far.

Example 1. Consider the reviewing process of some conference. Let the set of agents
be A = {Chair} ∪ RV , where Chair is the PC chair and RV = {R1, . . . ,RM} is the
set of reviewers. Let there be N papers PP = {1, . . . ,N} to be reviewed. We suppose
that the decision of acceptance of each paper n ∈ PP is based on three opinions. Each
opinion is modelled by the truth value of a propositional variable. Let their set be P =⋃

1≤n≤N{p1
n, p

2
n, p

3
n}. Initially it is the PC chair who controls all the papers, i.e. we have

an initial model where ξ(pk
n) = {Chair} for all n ∈ PP and k ∈ {1, 2, 3}. The assignment

of papers to reviewers corresponds to the execution of the sequence
p1

1
↪→RV , · · · ,

p3
N
↪→RV .

After that, every pk
n is controlled by both the PC chair and some reviewer. Finally, the

3 We will generalise the atomic programs, but we will keep a complete investigation of the PDL
constructs for later work.

108

reviewers’ decisions are modelled as the assignment of truth values to papers under

their control, i.e. the programs pk
n

Rm
←> and pk

n
Rm
←⊥. One may then check properties such

as 〈
PP
↪→RV〉〈PP

RV
←〉ϕ for some property ϕ expressing for instance that the acceptance rate

is 25%. A more complex and more realistic check where the final decision is up to the

PC chair can be expressed by 〈Chair
PP
↪→RV〉〈PP

RV
←〉〈RV

PP
↪→Chair〉〈PP

RV
←〉〈PP

Chair
← 〉ϕ.

We are going to take this example up in the end of Section 4.1.

Later on in this paper (in Section 5) we will investigate an adequate mix of the dy-
namic logic of propositional control with knowledge. Though related, up to now the
logic of assignments was studied independently of CL-PC in the framework of exten-
sions of public announcement logic [5, 11]. The latter aim at modelling how agents’
knowledge changes when some propositional variable is publicly assigned to true or to
false. There, assignments take the form q←ψ, and the formula 〈q←ψ〉ϕ reads “ϕ is true
after the assignment of ψ to q”. So these assignments differ in two respects from ours:
first, q may be assigned any formula ψ, and second, no agent performing an assignment
is mentioned. As to the first point, assigning only > and ⊥ is going to simplify our
technicalities; as to the second point, in the perspective of extending a logic of agency
such as CL-PC it is appealing to consider that assignments are performed by agents. We
will see that there are interesting and intricate complications that arise when the agents
learn that the value of a proposition has changed or when an agent publicly transfers
her control over a proposition to another agent.

We believe that logics of propositional control offer a concrete and general tool
for specifying interaction protocols of intelligent agents. The investigation of dynamic
logics of propositional control appears bottomless. We present a few of these possible
variants in Section 6.

2 PC models: models of propositional control

Throughout the paper, A denotes a (fixed) finite set of agents and P denotes a (fixed)
countable set of propositional variables. A coalition is a subset of agents J ⊆ A. The set
J = A \ J is the complement of J.

Definition 1. A model of propositional control (PC model) is a couple (ξ, θ) where:

– ξ : P −→ 2A, called an allocation;
– θ : P −→ {tt,ff}, called a valuation.

An allocation maps propositional variables to agents. The set {q : i ∈ ξ(q)} is i’s part
of ξ: the set of propositions under the control of i. The function ξ determines the initial
allocation of propositional variables to agents, and θ determines the initial truth value
of the propositional variables.

In the terminology of Gerbrandy [7], the models of CL-PC and δCL-PC are PC
models where the control of every variable is both exclusive (allocated to at most one
agent) and actual (allocated to at least one agent).4

4 To match van der Hoek and Wooldridge’s models, Gerbrandy actually needs to strengthen his
abstract models with a property of full control. It says that if an agent i controls a set Ati of

109

Definition 2. We say a PC model (ξ, θ) has exclusive and actual control if ξ(q) is a
singleton for every variable q ∈ P.

We are going to present several languages to talk about these structures of propo-
sitional control. Apart from the epistemic extension that is presented in Section 5, all
languages will be interpreted on these models. The epistemic extension is going to be
interpreted on a generalisation of PC models.

For each of the languages that we are going to introduce, we define Aϕ to be the
set of agents from A occurring in ϕ, and we define Pϕ to be the set of variables from P
occurring in ϕ.

3 DLPC: dynamic logic of propositional control

In this section we define syntax and semantics of the dynamic logic of propositional
control DLPC, whose modal operators are 〈q←>〉 (setting q to true), 〈q←⊥〉 (setting q
to false), 〈i

q
↪→〉 (i loosing control of q), and 〈

q
↪→i〉 (i obtaining control of q). We prove

the NP-completeness of DLPC satisfiability.

3.1 Language and semantics

Beyond the modal operators that we have introduced informally in the introduction, we
also need constants ci,q that are read “agent i controls variable q”. They are going to be
useful to state the reduction axioms for our basic logic.

The language of DLPC is defined by the following BNF:

ϕF q | > | ⊥ | ci,q | ¬ϕ | ϕ ∨ ϕ | 〈q←>〉ϕ | 〈q←⊥〉ϕ | 〈i
q
↪→〉ϕ | 〈

q
↪→i〉ϕ

where i ranges over A and q ranges over P.
We use the logical connectives ∧,→ and↔ with the usual meaning. We use q←τ

in order to talk about q←> and q←⊥ in an economic way, where τ is a placeholder for
either > or ⊥.

The length of a formula ϕ, noted |ϕ|, is the number of symbols used to write down
ϕ (without 〈, 〉, parentheses and commas). For example |ci,q| = 3 and |〈q←>〉(q ∧ r)| =
3 + 3 = 6.

Given a PC model (ξ, θ), we are going to update θ in order to interpret the assignment
operators, and we are going to update ξ in order to interpret allocation programs.

Given a valuation θ and an allocation ξ, we define the updates ξi
q
↪→, ξ

q
↪→i, θq←> and

θq←⊥ as follows:

ξi
q
↪→(p) =

ξ(p) \ {i} when p = q
ξ(p) otherwise.

ξ
q
↪→i(p) =

ξ(p) ∪ {i} when p = q
ξ(p) otherwise.

θq←>(p) =

tt when p = q
θ(p) otherwise.

θq←⊥(p) =

ff when p = q
θ(p) otherwise.

propositions, then she has a strategy for every valuation of the propositions in Ati. However,
this property is commonplace here.

110

The truth conditions are the usual ones for >, ⊥, negation and disjunction, plus:

(ξ, θ) |= q iff θ(q) = tt
(ξ, θ) |= ci,q iff i ∈ ξ(q)
(ξ, θ) |= 〈q←τ〉ϕ iff (ξ, θq←τ) |= ϕ

(ξ, θ) |= 〈i
q
↪→〉ϕ iff (ξi

q
↪→, θ) |= ϕ

(ξ, θ) |= 〈
q
↪→i〉ϕ iff (ξ

q
↪→i, θ) |= ϕ

DLPC validity and DLPC satisfiability are defined as usual.

Since the updates δ ∈ {i
q
↪→,

q
↪→j, q←τ} are always successful and deterministic,

the formulas 〈δ〉> and 〈δ〉ϕ ↔ ¬〈δ〉¬ϕ are valid. We have as well that 〈
q
↪→j〉cj,q and

〈i
q
↪→〉¬ci,q are valid.

Remark 1. Note that our truth conditions for the modal operators are slightly simpler
than the original ones in terms of partitions of P [9, 15, 8]. In particular, they naturally
account for (trivial) ‘auto-delegations’ i

p
↪→i, while the original semantics has to explic-

itly distinguish this case.

3.2 DLPC: complexity and completeness

Proposition 1. The following equivalences are DLPC valid.

〈q←τ〉p ↔

p if q , p
τ if q = p

〈q←τ〉> ↔ >

〈q←τ〉⊥ ↔ ⊥

〈q←τ〉ci,p ↔ ci,p

〈q←τ〉¬ϕ ↔ ¬〈q←τ〉ϕ
〈q←τ〉(ϕ1 ∨ ϕ2)↔ 〈q←τ〉ϕ1 ∨ 〈q←τ〉ϕ2

〈j
q
↪→〉p ↔ p

〈j
q
↪→〉> ↔ >

〈j
q
↪→〉⊥ ↔ ⊥

〈j
q
↪→〉ci,p ↔

ci,p if q , p or j , i
⊥ if q = p and j = i

〈j
q
↪→〉¬ϕ ↔ ¬〈j

q
↪→〉ϕ

〈j
q
↪→〉(ϕ1 ∨ ϕ2)↔ 〈j

q
↪→〉ϕ1 ∨ 〈j

q
↪→〉ϕ2

111

〈
q
↪→j〉p ↔ p

〈
q
↪→j〉> ↔ >

〈
q
↪→j〉⊥ ↔ ⊥

〈
q
↪→j〉ci,p ↔

ci,p if q , p or j , i
> if q = p and j = i

〈
q
↪→j〉¬ϕ ↔ ¬〈

q
↪→j〉ϕ

〈
q
↪→j〉(ϕ1 ∨ ϕ2)↔ 〈

q
↪→j〉ϕ1 ∨ 〈

q
↪→j〉ϕ2

These equivalences provide a complete set of reduction axioms for 〈q←τ〉, 〈i
q
↪→〉

and 〈
q
↪→j〉. Call red the mapping which iteratively applies the above equivalences from

the left to the right, starting from one of the innermost modal operators. red pushes
the dynamic operators inside the formula, and finally eliminates them when facing an
atomic formula. Each step increases the length of the formula by at most 3 (when dis-
tributing dynamic operators over disjunctions). The length of the reduced formula is
therefore linear in the length of the original formula.

Note that although no dynamic operator occurs in red(ϕ), it is not a formula of
classical propositional logic because of the control atoms ci,q. The next proposition
shows how they can be dealt with.

Proposition 2. Let ϕ be a formula in the language of DLPC. Then

1. red(ϕ) has no modal operators
2. |red(ϕ)| ≤ 3 × |ϕ|
3. red(ϕ)↔ ϕ is DLPC valid
4. red(ϕ) is DLPC valid iff red(ϕ) is valid in classical propositional logic, where the

ci,q in red(ϕ) are understood as propositional variables.

Theorem 1. Satisfiability in DLPC is NP-complete.

PROOF. Hardness is the case because DLPC is a conservative extension of classical
propositional logic: for every formula ϕ in the language of classical propositional logic,
ϕ is classically valid if and only if ϕ is DLPC valid (where it is supposed that control
atoms ci,q are not in the language of classical propositional logic).

As to membership, items 3 and 4 of Proposition 2 guarantee that ϕ is DLPC sat-
isfiable iff red(ϕ) is satisfiable in classical propositional logic. Moreover, red(ϕ) is a
polynomial reduction from CL-PC to classical propositional logic. �

Theorem 2. The validities of DLPC are completely axiomatized by

– some axiomatization of classical propositional logic
– the reduction axioms of Proposition 1
– the rule of equivalence

from ϕ↔ ϕ′ infer 〈δ〉ϕ↔ 〈δ〉ϕ′

where δ is 〈q←>〉, 〈q←⊥〉, 〈i
q
↪→〉 or 〈

q
↪→j〉.

112

PROOF. Soundness is guaranteed by Proposition 1, plus the fact that the inference rules
preserve validity.

The completeness proof proceeds as follows. Suppose ϕ is DLPC valid. Then red(ϕ)
is classically valid due to Proposition 2. By the completeness of classical propositional
logic, red(ϕ) is also provable there. DLPC being a conservative extension of classical
propositional logic, red(ϕ) is provable in DLPC, too. Then the formula ϕ must be prov-
able in DLPC, because the reduction axioms are part of our axiomatics and because the
rule of substitution of equivalents is derivable.5 �

It is appealing to consider that assignments are performed by agents. Indeed, as
for the moment, assignment are mere events. To reason about protocols of interacting
agents, it is important to raise these events to the status of action. Authored assignments
and control transfers are expressed in DLPC by the following abbreviations:

〈q
i
←τ〉ϕ

def
= ci,q ∧ 〈q←τ〉ϕ

〈i
q
↪→j〉ϕ def

= ci,q ∧ 〈i
q
↪→〉〈

q
↪→j〉ϕ

‘Spelling out’ these abbreviations only polynomially increases the size of formulas. The
modal operators that we are going to introduce in the next section are also going to be
reducible to DLPC, but not polynomially so (or rather, we don’t know a polynomial
reduction).

In the next section, we fully integrate these notions of agency into the logic.

4 Q-DLPC: Quantified DLPC

In this section we extend DLPC with two new constructs and modal operators. The
modal operator 〈

q
↪→J〉 quantifies over control transfer targets in the set of agents J and

〈q
J
←〉 quantifies over both assignment authors in the set J and over truth values. We

could as well introduce operators 〈I
q
↪→〉: the presentation would be symmetrical to that

of 〈
q
↪→J〉.6

4.1 Language and semantics

The language of Q-DLPC is defined by adding formulas of the form 〈q
J
←〉ϕ and 〈

q
↪→J〉ϕ

to the language of DLPC, where q is a propositional variable in P and J ⊆ A. 〈q
J
←〉ϕ

reads “the agents in J can ensure that ϕ by possibly changing the truth value of q”, and
〈

q
↪→J〉ϕ reads “ϕ holds after the transfer of q to some agent in J”.

The truth conditions of the operators 〈q
J
←〉 and 〈

q
↪→J〉 are:

5 The rule of substitution of equivalents is necessary in order to apply the reduction axioms
‘deeply’ inside formulas. It can be derived from the rules of equivalence for the classical
connectives (that are derivable with classical propositional logic) and the rule of equivalence
for δ of the axiomatics of DLPC.

6 We note that the strategy is similar to Borgo’s in [4], who also proposes a reconstruction of
coalition logic starting from a dynamic logic.

113

(ξ, θ) |= 〈q
J
←〉ϕ iff (ξ, θ) |= ϕ ∨ (〈q←>〉ϕ ∧

∨
i∈J ci,q)∨

(〈q←⊥〉ϕ ∧
∨

i∈J ci,q)

(ξ, θ) |= 〈
q
↪→J〉ϕ iff (ξ, θ) |=

∨
i∈J 〈

q
↪→i〉ϕ

Examples of valid equivalences are: 〈
q
↪→∅〉ϕ↔ ⊥, 〈q

∅
←〉ϕ↔ ϕ, 〈q

A
←〉ϕ↔ 〈q←>〉ϕ∨

〈q←⊥〉ϕ, 〈q←>〉ϕ↔ 〈q
A
←〉(q ∧ ϕ), and 〈q←⊥〉ϕ↔ 〈q

A
←〉(¬q ∧ ϕ).

We observe that the program q← that we discussed in the introduction can be de-

fined as q
A
←. We also observe that 〈q

{i}
←〉> is logically equivalent to >, while both

〈q
i
←>〉> and 〈q

i
←⊥〉> are logically equivalent to ci,q. We also observe that ci,p ↔

(〈
{i}
←〉p ∧ 〈

{i}
←〉¬p).

The next proposition is going to be useful to prove several results.

Proposition 3. Let ϕ be a Q-DLPC formula. Let (ξ1, θ1) and (ξ2, θ2) be PC models
agreeing on every variable outside ϕ, i.e. such that for every q < Pϕ, ξ1(q) = ξ2(q)
and θ1(q) = θ2(q). Then (ξ1, θ1) |= ϕ iff (ξ2, θ2) |= ϕ.

4.2 Two abbreviations in Q-DLPC

Let P = {q1, · · · , qn} be a finite set of propositional variables. We define:

〈P
J
←〉ϕ

def
= 〈q1

J
←〉 · · · 〈qn

J
←〉ϕ

〈
P
↪→J〉ϕ def= 〈

q1
↪→J〉 · · · 〈

qn
↪→J〉ϕ

For the case n = 0 we suppose that 〈∅
J
←〉ϕ and 〈

∅
↪→J〉ϕ are both equal to ϕ. Just as for

assignments with authors q
i
←> and q

i
←⊥, expanding these abbreviations only polyno-

mially increases the size of the formula (precisely, the size of the rewritten formula is
quadratic in the size of the original formula).

Example 2. Let us take up our running example. Consider the following formulas.

≤4 =
∧

m∈RV
∨

X⊆PP,|X|≥|PP|−4
∧

n∈X,q∈{p1
n,p2

n,p
3
n}
¬cm,q

no2 =
∧

m∈RV
∧

n∈PP
∨
{q,r}⊂{p1

n,p2
n,p

3
n}

(¬cm,q ∧ ¬cm,r)
gets3 =

∧
q∈P

∨
m∈RV cm,q

noExtr =
∧

m∈RV
∨
{q,r}⊆P(cm,q ∧ cm,r ∧ q ∧ ¬r)

accn =
∨
{q,r}⊆{p1

n,p2
n,p

3
n}

(q ∧ r)
25% =

∧
X⊂PP,|X|≥|PP|/4

∨
n∈X ¬accn

They express that: each reviewer gets at most four papers (≤4); no reviewer gets a
paper twice (no2); each paper gets three reviewers (gets3); no reviewer can have only
positive or only negative opinions (noExtr); paper n is accepted if at least two opinions
are positive (accn); at most 25% of the papers can be accepted (25%).

We can verify that the program chair can distribute the papers according to the
constraints and such that the acceptance rate can be obtained, by checking Q-DLPC

validity of the following formula:∧
q∈P

cChair,q ∧
∧

R∈RV

cR,q

 −→ 〈 P↪→RV〉(≤4 ∧ no2 ∧ gets3 ∧ 〈P
RV
←〉(noExtr ∧ 25%))

114

4.3 Q-DLPC: complexity and completeness

Theorem 3. The validities of Q-DLPC are completely axiomatized by

– the axiomatization of DLPC of Theorem 2
– the following axiom schemas:

〈q
J
←〉ϕ↔ ϕ ∨ (〈q←>〉ϕ ∧

∨
i∈J ci,q) ∨ (〈q←⊥〉ϕ ∧

∨
i∈J ci,q)

〈
q
↪→J〉ϕ↔

∨
i∈J 〈

q
↪→i〉ϕ

PROOF. The proof follows the lines of that of Theorem 2, for the appropriately defined
reduction mapping red. �

The axiom schemas of Theorem 3 allow to rewrite every Q-DLPC formula to a
DLPC formula. Combining this with a decision procedure for DLPC we obtain a decision
procedure for Q-DLPC. However the rewriting step increases the length of the formula
exponentially, and the decision procedure runs in exponential space. One can do better:

Theorem 4. The model checking problem for Q-DLPC is PSPACE-complete.

PROOF. Hardness can be proved like for CL-PC by reducing QBF satisfiability [10].
It is easy to adapt the algorithm for model checking δCL-PC of [15] in order to deal

with our operators. The procedure still does not require more that |ϕ| recursive calls,
where ϕ is the input formula, and every call requires to store only one model at a time.
Hence, the algorithm runs in polynomial space. �

Theorem 5. Satisfiability in Q-DLPC is PSPACE-complete.

PROOF. Hardness can again be proved like for CL-PC [10].
As for easiness, first observe that like CL-PC and δCL-PC, Q-DLPC has the small

model property. Hence, just as in [15], given a formula ϕ we guess a model (ξ, θ) and
check whether (ξ, θ) |= ϕ. According to Theorem 4 it takes space polynomial in |ϕ|
to check whether (ξ, θ) |= ϕ. As we had guessed (ξ, θ), satisfiability checking is in
NPSPACE = PSPACE. �

The proofs of Theorem 4 and Theorem 5 are analogous to those of the complexity
results for CL-PC in [10]. The only difference is that in CL-PC a model for a formula
ϕ can be encoded in space linear in the length of ϕ, while in Q-DLPC, a model for
a formula ϕ can be encoded in space quadratic in the length of ϕ. (This is because a
propositional variable is not controlled by a single agent but by a set of agents.)

4.4 Defining van der Hoek and Wooldridge’s coalition modality in Q-DLPC

We now consider the coalition operators of CL-PC. These are normal modal operators

that we here write 〈
J
←〉.7 They intend to grasp a local (or contingent) ability. When the

set of propositional variables P is finite then the semantics is the same as that of the

above 〈P
J
←〉. As we allow for P to be infinite we have to consider 〈

J
←〉 to be primitive.

The accessibility relations are defined as follows:
7 The original notation is ^J .

115

(ξ, θ)R J
←

(ξ′, θ′) iff ξ′ = ξ, and if ξ(p) ∩ J = ∅ then θ′(p) = θ(p)

and the truth condition is:

(ξ, θ) |= 〈
J
←〉ϕ iff there is (ξ′, θ′) such that (ξ, θ)R J

←
(ξ′, θ′) and (ξ′, θ′) |= ϕ

The next result shows that actually there was no need to add the primitive 〈
J
←〉: we

may restrict the variables that are assigned by J, to the set Pϕ of propositional variables
occurring in ϕ.

Proposition 4. The schema 〈
J
←〉ϕ↔ 〈Pϕ

J
←〉ϕ is Q-DLPC valid.

PROOF. The right-to-left direction is straightforward.

For the other direction, suppose (ξ, θ) |= 〈
J
←〉ϕ. Hence there is a model (ξ′, θ′) such

that (ξ, θ)R J
←

(ξ′, θ′) and (ξ′, θ′) |= ϕ. Observe that ξ′ = ξ. Let (ξ′′, θ′′) be such that
ξ′′ = ξ′ and

θ′′(q) =

θ′(q) if q ∈ Pϕ
θ(q) if q < Pϕ

We have (ξ, θ)R J
←

(ξ′′, θ′′), and by Proposition 3 we have (ξ′′, θ′′) |= ϕ iff (ξ′, θ′) |= ϕ;

therefore (ξ, θ) |= 〈Pϕ
J
←〉ϕ. �

4.5 Defining Pauly’s coalition modality in Q-DLPC

As we said in the introduction, the original motivation of the inventors of CL-PC was
to reconstruct Pauly’s Coalition Logic CL. There, the CL formula 〈[J]〉ϕ reads “the
coalition J can ensure that ϕ holds next, whatever the other agents choose to do”.8

Van der Hoek and Wooldridge proposed to identify the CL formula 〈[J]〉ϕ with the

CL-PC formula 〈
J
←〉[

J
←]ϕ (where as usual in modal logic [

J
←]ϕ abbreviates ¬〈

J
←〉¬ϕ).

It represents the so-called ∃∀-ability of J for ϕ, and generally called α-ability in social
choice theory [1]. As van der Hoek and Wooldridge point out, the δCL-PC formula

[
J
←]〈

J
←〉ϕ expresses ∀∃-ability, alias β-ability.

It follows from the above Proposition 4 that 〈
J
←〉[

J
←]ϕ↔ 〈Pϕ

J
←〉[Pϕ

J
←]ϕ is Q-DLPC

valid. We are therefore entitled to consider from now on that 〈[J]〉ϕ is an abbreviation

of 〈Pϕ
J
←〉[Pϕ

J
←]ϕ.

5 DELPC: dynamic epistemic logic of propositional control

We mentioned before that the assignment operator was introduced in the context of dy-
namic epistemic logics, which are extensions of epistemic logic by dynamic operators

8 The original notation is [J]ϕ; van der Hoek and Wooldridge use 〈〈J〉〉ϕ.

116

such as assignments and announcements. In the same spirit we now extend our frame-
work by modal operators of knowledge and call the logic dynamic epistemic logic of
propositional control, abbreviated DELPC.

We will assume that assignments and control transfers are public events and are
therefore fully observable by the agents.

We are going to give an axiomatization and a decision procedure for our extension.

5.1 Language and semantics

We consider the extension of the language of DLPC by modal operators of knowledge
Ki, one per agent i ∈ A, and by modal operators 〈ϕ!〉 of truthful public announcement
of ϕ, where ϕ is any formula. Kiϕ is read “i knows that ϕ”, and 〈ϕ!〉ψ is read “the
announcement of ϕ is possible, and ψ holds afterwards”.

To interpret the epistemic operators we move from PC models (ξ, θ) to epistemic
PC models of the form M = (W,∼, Ξ, Θ), where

– W is a nonempty set of possible worlds
– ∼ : A −→ (W ×W) associates an equivalence relation ∼i to every agent i
– Ξ : W −→ (P −→ 2A) associates allocations to possible worlds
– Θ : W −→ (P −→ {tt,ff}) associates valuations to possible worlds

It is convenient to write Ξw(p) and Θw(p) instead of Ξ(w)(p) and Θ(w)(p). Every couple
(Ξw, Θw) is a PC model.

We now define the updates on an epistemic model. For conciseness we introduce
two notations. For δ ∈ {i

q
↪→,

q
↪→i}, we note Ξδ the function that maps every state v to

the updated allocation Ξδv . Also, Θq←τ is the function that maps every v to the valuation
Θ

q←τ
v .

Let M = (W,∼, Ξ, Θ) be a pointed model, and let w ∈ W. Its updates are defined as
follows.

Mi
q
↪→ = (W,∼, Ξi

q
↪→, Θ)

M
q
↪→i = (W,∼, Ξ

q
↪→i, Θ)

Mq←τ = (W,∼, Ξ, Θq←τ)

Mψ! = (W ′,∼′, Ξ′, Θ′) such that

W ′ = {v ∈ W : M,w |= ψ}
∼′ = ∼ ∩ (W ′ ×W ′)
Ξ′ = Ξ|W′

Θ′ = Θ|W′

According to our semantics, assignments and control transfers are public: when one
of these events occurs then every agent updates his epistemic possibilities accordingly.

The truth conditions also have to be adapted and extended accordingly; in particular:

M,w |= q iff Θw(q) = tt, for q ∈ P
M,w |= ci,q iff i ∈ Ξw(q)
M,w |= Kiϕ iff M, v |= ϕ for every v such that w ∼i v

117

Moreover, for every program δ ∈ {i
q
↪→,

q
↪→i, q←τ} we define:

M,w |= 〈δ〉ϕ iff Mδ,w |= ϕ
M,w |= 〈ψ!〉ϕ iff M,w |= ψ and Mψ!,w |= ϕ

Let us call the resulting logic DELPC. Examples of DELPC validities are 〈q←⊥〉Ki¬q,
〈i

q
↪→〉Ki¬ci,q, and 〈

q
↪→j〉Kicj,q, highlighting that assignments and control transfer are pub-

lic events.

Remark 2. According to our semantics, agent i does not necessarily know whether p is
allocated to j or not, and so even if i = j. In formulas, ci,q ∧ ¬Kici,q is satisfiable. One
could however easily guarantee that agents are aware of what is or is not allocated to
them, by imposing the following constraint on models: if w ∼i w′ then for every q ∈ P,
i ∈ Ξw(q) iff i ∈ Ξw′ (q). Such models validate ci,q → Kici,q.

5.2 Completeness and complexity

We are now able to formulate reduction axioms for our logic.

Proposition 5. The reduction axioms of Proposition 1 are DELPC valid, as well as the
following equivalences:

〈q←τ〉Kiϕ↔ Ki〈q←τ〉ϕ

〈j
q
↪→〉Kiϕ↔ Ki〈j

q
↪→〉ϕ

〈
q
↪→j〉Kiϕ↔ Ki〈

q
↪→j〉ϕ

〈ψ!〉ϕ↔ ψ ∧ ϕ if ϕ is of the form q, >, ⊥, or ci,q

〈ψ!〉¬ϕ↔ ψ ∧ ¬〈ψ!〉ϕ
〈ψ!〉(ϕ1 ∨ ϕ2)↔ 〈ψ!〉ϕ1 ∨ 〈ψ!〉ϕ2

〈ψ!〉Kiϕ↔ ψ ∧ Ki¬〈ψ!〉¬ϕ

In the 4th equivalence, ϕ may more generally be any formula without modal operators.
The axiom schemas of Proposition 5 together with the reduction axioms of DLPC

of Theorem 3 provide a complete set of axioms for the reduction of DELPC to standard
epistemic logic S5n. Call red(ϕ) the resulting formula.

Theorem 6. Let ϕ be a formula in the language of DELPC. Then

1. red(ϕ) has no modal operators other than epistemic operators
2. red(ϕ)↔ ϕ is DELPC valid
3. red(ϕ) is DELPC valid iff red(ϕ) is S5n valid, where the ci,q in red(ϕ) are understood

as propositional variables.

As before, the reduction axioms allow to show completeness.

Theorem 7. The validities of DELPC are axiomatized by

– the axioms and inference rules of DLPC of Theorem 1
– the axioms and inference rules of S5n, for every modal operator Ki
– the axiom schemas of Proposition 5

118

– the rules of equivalence for 〈ψ!〉:

from ϕ↔ ϕ′ infer 〈ψ!〉ϕ↔ 〈ψ!〉ϕ′

from ψ↔ ψ′ infer 〈ψ!〉ϕ↔ 〈ψ′!〉ϕ

PROOF. The proof uses the reduction axioms and then follows the lines of that for
Theorem 2. �

While for DLPC we were able to show that the length of the reduced formula is poly-
nomial in the length of the original formula (Proposition 2), this is no longer the case for
DELPC. This is due to the form of the reduction axioms for announcements of Proposi-
tion 5 where ϕ occurs twice on right hand sides (cf. [12]). A reduction-based decision
procedure is therefore suboptimal. However, reduction allows to establish completeness
and decidability.

Theorem 8. Satisfiability in DELPC is PSPACE-complete if there are at least two agents,
and NP-complete if there is only one agent.

PROOF. Hardness is the case because DLPC is a conservative extension of epistemic
logic (whose satisfiability problem is NP-hard for one agent and PSPACE-hard for more
than one agent).

Membership can be proved by applying the abbreviation technique of [12]. �

5.3 Authored assignment

In the end of Section 3 we had proposed the following definition 〈i
q
↪→j〉ϕ def

= ci,q ∧

〈i
q
↪→〉〈

q
↪→j〉ϕ. It identified the control transfer programs i

q
↪→j of δCL-PC, with a mere

test of ci,q followed by i
q
↪→ and

q
↪→j. Such an abbreviation is no longer intuitive in

DELPC because the events are public by assumption. The occurrence of the control
transfer being public, every agent can eliminate her epistemic possibilities where i did
not control q right before the transfer occurred. Hence, i

q
↪→j should amount to the public

announcement of ci,q followed by i
q
↪→ and

q
↪→j. This leads to the following (re)definition

that suits better.

〈i
q
↪→j〉ϕ def= 〈ci,q!〉〈i

q
↪→〉〈

q
↪→j〉ϕ

Similarly, we had identified i’s assignment of q to τ, q
i
←τ, with a test of ci,q followed

be the execution of the program q←τ. Again, the occurrence of an action q
i
←⊥ being

public, every agent eliminates his possibility where i does not control q. In formulas, we

expect 〈q
i
←⊥〉¬Kjci,j to be unsatisfiable. However, with the abbreviation of Section 3

this formula would be satisfiable. Since we assumed that events are public, q
i
←τ should

actually amount to the public announcement of ci,q followed by the public assignment
q←τ. This leads to the following (re)definition that suits better.

〈q
i
←τ〉eϕ

def
= 〈ci,q!〉〈q←τ〉ϕ

The reader may check that 〈q
i
←⊥〉¬Kjci,j is unsatisfiable in DELPC.

119

6 Conclusion and perspectives

We have relaxed the original assumption of exclusive and actual control of van der Hoek
and Wooldridge’s coalition logic of propositional control CL-PC and have shown that
their logic can be embedded in ours. We have moreover extended the existing logics
of propositional control by several concepts stemming from dynamic epistemic logics:
knowledge, assignments, and announcements. We have shown how the resulting logics
relate to CL-PC and its extension δCL-PC. We have also established their axiomatiza-
tion and their complexity for satisfiability and model checking.

The remaining of the section is devoted to the sketch of some possible extensions
of our logic.

The most obvious variant is to integrate PDL-style constructs to DLPC. In a nutshell,
it allows the following direct definitions of some programs we have considered in this
paper.

q
J
←
def
= >? +

(
(
∨

i∈J ci,q)?; (q←> + q←⊥)
)

q
↪→{j1 . . . jn}

def
=

q
↪→j1 + . . . +

q
↪→jn

{qi . . . qn}
J
←
def
= q1

J
←; . . . ; qn

J
←

{q1...qn}

↪→ J def=
q1
↪→J; . . . ;

qn
↪→J

i
q
↪→j def= ci,q?; i

q
↪→;

q
↪→j

Being a dynamic logic, the logic can capture the usual instructions of structured pro-
gramming. For instance, for every complex program δ1 and δ2:

if ϕ then δ1 else δ2
def
= (ϕ?; δ1) ∪ (¬ϕ?; δ2)

while ϕ do δ1
def
= (ϕ?; δ1)∗;¬ϕ

We conjecture that the resulting logic is PSPACE-complete, too. That is, it would be no
more complex than van der Hoek et al.’s δCL-PC, despite a greater expressivity and the
use of more general models.

Another straightforward generalization of PC models would be to distinguish be-
tween making a variable q false and making it true. This is related to Gerbrandy’s no-
tion of positive and negative control. In order to take that into account the function ξ has
to be split up into ξ+ and ξ−: ξ+(q) is the set of those agents which may make q true, and
ξ−(q) is the set of those agents which may make q false. In the language one may then
have control atoms ci,q

+ and ci,q
− which are interpreted as expected. Moreover, one may

have modal operators i
+q
↪→, i

−q
↪→,

+q
↪→i, and

−q
↪→i of loosing or obtaining positive or negative

control. This then may be taken into account by defining e.g. authored assignment as

〈q
i
←>〉ϕ

def
= ci,q

+ ∧ 〈q←>〉ϕ.

Concerning the epistemic extension we observe that while the extension by public
announcements is technically straightforward it does not account for announcements
that are made by agents. In a first approach one might identify the announcement of ϕ
by i with the public announcement of Kiϕ; however, a full analysis requires more work.

120

In a similar spirit, one might extend our logic by event models [3, 2, 6], which account
for incomplete (and even erroneous) perception of events by agents. This should be
possible without difficulties. As a teaser, it would allow to adequately handle protocols
with intricate epistemic aspects such as for instance a variant of Example 1 with double
blind reviewing, or a more realistic setting where the protocol is specified in a way such
that a reviewer neither know what the allocations of the other members of the committee
are, nor which opinions were already expressed about a paper.

Acknowledgements

Thanks for several suggestions are due to Guillaume Aucher, Pierre Marquis, Leon van
der Torre and Emil Weydert. We are also grateful to the reviewers of LIS@ESSLLI
for their comments that helped to improve the paper. Andreas Herzig’s research on
this paper is partly funded by the ANR project Social trust analysis and formalization
(ForTrust). Nicolas Troquard’s is supported by the EPSRC grant EP/E061397/1.

References

1. Joseph Abdou and Hans Keiding. Effectivity functions in social choice. Kluwer Academic,
1991.

2. Alexandru Baltag and Lawrence S. Moss. Logics for epistemic programs. Synthese,
139(2):165–224, 2004.

3. Alexandru Baltag, Lawrence S. Moss, and Slawomir Solecki. The logic of public announce-
ments, common knowledge, and private suspicions. In Proc. TARK’98, pages 43–56, 1998.

4. Stefano Borgo. Coalitions in action logic. In Proc. IJCAI’07, pages 1822–1827, 2007.
5. Hans P. van Ditmarsch, Wiebe van der Hoek, and Barteld Kooi. Dynamic epistemic logic

with assignment. In Proc. AAMAS’05, pages 141–148, 2005.
6. Hans P. van Ditmarsch, Wiebe van der Hoek, and Barteld Kooi. Dynamic Epistemic Logic.

Kluwer Academic Publishers, 2007.
7. Jelle Gerbrandy. Logics of propositional control. In Hideyuki Nakashima, Michael P. Well-

man, Gerhard Weiss, and Peter Stone, editors, 5th International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2006), pages 193–200. ACM, 2006.

8. Wiebe van der Hoek, Dirk Walther, and Michael Wooldridge. On the logic of cooperation
and the transfer of control. J. of AI Research (JAIR), 37:437–477, 2010.

9. Wiebe van der Hoek and Michael Wooldridge. On the dynamics of delegation, cooperation
and control: a logical account. In Proc. AAMAS’05, 2005.

10. Wiebe van der Hoek and Michael Wooldridge. On the logic of cooperation and propositional
control. Artif. Intell., 164(1-2):81–119, 2005.

11. Barteld Kooi. Expressivity and completeness for public update logic via reduction axioms.
Journal of Applied Non-Classical Logics, 17(2):231–253, 2007.

12. Carsten Lutz. Complexity and succintness of public announcement logic. In Proc. AA-
MAS’06, pages 137–144, 2006.

13. Nicolas Troquard, Wiebe van der Hoek, and Michael Wooldridge. A logic of propositional
control for truthful implementations. In Proc. TARK’09, pages 237–246, 2009.

14. Nicolas Troquard, Wiebe van der Hoek, and Michael Wooldridge. A logic of games and
propositional control. In Proc. AAMAS’09, pages 961–968, 2009.

15. Dirk Walther. Strategic Logics: Complexity, Completeness and Expressivity. PhD thesis,
University of Liverpool, 2007.

121

Formal Definitions and Complexity Results for
Trust Relations and Trust Domains?

Simon Kramer??, Rajeev Goré, and Eiji Okamoto

1 University of Tsukuba, Japan
simon.kramer@a3.epfl.ch

2 Australian National University
rajeev.gore@anu.edu.au

3 University of Tsukuba, Japan
okamoto@risk.tsukuba.ac.jp

Abstract. We propose computational, declarative definitions of the con-
cepts of weak and strong trust relations between interacting agents, and
trust domains of trust-related agents in distributed systems. Our defini-
tions yield computational complexity results for deciding potential and
actual trust relationships and membership in trust domains, as well as
a positive (negative) compositionality result for strong (weak) trust do-
mains. Our defining principle for weak and strong trust is (common)
belief in and knowledge of agent correctness, respectively.

Keywords computability, compositionality, and scalability of trust and
trustworthiness; computer-aided decision making (CADM); dependable
distributed or multi-agent systems; modal logics of belief and knowledge.

1 Introduction

1.1 Motivation

Dependable distributed systems guarantee their functionality both in spite of
and thanks to the technologies that implement these systems, and the (man
and/or machine) agents4 that partake in them. The functionality guarantee is
conditioned on naming and number, i.e., on agent identity for the information
security aspect [2, Chapter 6] (anonymity, pseudonymity), and on a minimal
number of correct (or dually, a maximal number of faulty/corrupt) agents for
the aspects of fault tolerance [26] (classical distributed computation) and cor-
ruption tolerance [37] (secure multiparty computation). The notion of agent
correctness (e.g., as induced by a policy) in turn depends on the system itself.
For example, agent correctness can include: absence of crash (liveness); absence
of cryptographic-key compromise; algorithmic, legal, and policy compliance; due

? A technical-report version of this paper including the appendix appears in [22].
?? This (corresponding) author’s contribution was funded with Grant P 08742 from the

Japan Society for the Promotion of Science.
4 network nodes, parties, processes, processors, real or virtual machines, users, etc.

122

debt repayment in credit banking; fairness in scheduling; etc. In any case, agent
correctness captures the predictability of each correct partaking agent that guar-
antees the functionality of the system to all, correct or faulty, partaking agents.
We stress that this predictability is one of agent behaviour rather than mental
attitude. All that matters is the behavioural effect of an attitude, not the at-
titude itself. (An attitude may have no or no relevant effect.) In sum, system
functionality depends on agent correctness, and agents depend on each other via
each other’s correctness. Whence the social need, called trust, to know whether
or not someone behaves correctly. At first sight, such knowledge may seem diffi-
cult to attain. Yet in our standard understanding of knowledge defined in terms
of indistinguishability of system states, an agent a simply attains knowledge
about a fact φ in a given state s as soon as φ also holds in all the states that
are indistinguishable from s to a (cf. Section 2). In particular, a need not be in
control of the system.

The concept of trust has at least three different aspects, namely trust rela-
tions and domains, and trust management. Our intuitions of them are as follows.

Trust relations An agent a trusts an agent b when a believes or even knows that
b behaves correctly, independently of b’s mental attitude. Hence, defining trust
based on the correct behaviour of agents is more general than defining trust
based on their mental attitude. The reader interested in the latter is referred
to [11], which is a substantial study of various kinds of trust relations based on
belief in and knowledge of mental attitudes.

Trust domains A trust domain is a community of mutually trusting agents with
the common belief in or even knowledge of the trust relationships in the commu-
nity. Informally, a statement φ is common belief or knowledge in a community C
when all agents in C believe or know that φ is true (call this new statement φ′),
all believe or know that φ′ is true (call this new statement φ′′), all believe or know
that φ′′ is true (call this new statement φ′′′), etc. Notice the mutual awareness
among agents w.r.t. the commonality of their knowledge or belief. This awareness
is computationally costly (cf. Section 3). More intuitions on common knowledge
in distributed systems can be found in [15].

Trust management Trust management is (cf. [30] for a recent survey):

1. the organisation of trust relations into trust domains (compartments), i.e.,
the sociology

2. the coordination of trust-building actions, i.e., the flow of trust (partial de-
hierarchisation and decompartmentation, e.g., by building reputation [31]).

The organisation of trust relations into trust domains requires the ability to
decide whether or not a given relation is a trust relation, and a given domain is
a trust domain. Ideally, this ability appeals to formal definitions and decidability
results for trust relations and trust domains, in order to support the human brain
with computer-aided decision making (CADM), as motivated by the following
example.

123

Example 1 (Group size and the human brain). According to [32], “150 is the
cognitive limit to the number of people a human brain can maintain a coherent
social relationship with”. “More generally, there are several layers of natural
human group size that increase with a ratio of approximately three: 5, 15, 50, 150,
500, and 1,500”. And “[a]s group sizes grow across these boundaries, they have
more externally imposed infrastructure—and more formalized security systems.”

The motivation for formal definitions now follows from the assumption that trust
is a fundamental element of any coherent social relationship; and the motivation
for CADM (requiring decidability results) additionally from the desire to extend
the cognitive limit of the human brain.

It turns out that deciding trust relationships can be tractable with the aid
of modern computers. However, deciding membership in trust domains, though
computationally possible in theory, is computationally intractable in practice,
even with the aid of clusters or clouds of (super-)computers. What is worse: not
only can we not make use of the promised power of cloud computing5 [1] for
deciding membership in trust domains in general, but also in particular when
the candidate domains are the computing clouds themselves!

Example 2 (Trust and Cloud Computing). According to [21], in cloud comput-
ing, “users are universally required to accept the underlying premise of trust.
In fact, some have conjectured that trust is the biggest concern facing cloud
computing. Nowhere is the element of trust more apparent than in security, and
many believe trust and security to be synonymous.” Also according to [28]: “The
growing importance of cloud computing makes it increasingly imperative that we
grapple with the meaning of trust in the cloud and how the customer, provider,
and society in general establish that trust.”

Indeed, the automatic validation of the underlying premise of cloud computing,
i.e., trust, is an intractably big concern for the clouds themselves, as indicated
above. However, the validation of trust can of course still be a tractably big
concern for the relations between the cloud members. Anyway, what remains
formally elusive is the declarative meaning of trust. As a matter of fact, the vast
majority of the research literature on trust focuses on how to (operationally)
establish and maintain trust of some form (e.g., with protocols, recommenda-
tion/reputation systems, reference monitors, trusted computing bases [14], etc.),
but without actually defining what trust of that form (declaratively) means. And
the very few works that do attempt declarative definitions of forms of trust do
not provide insights in the decidability or complexity of trust domains, or appli-
cations to security such as trust in cryptographic-key management (cf. Section 4)

The bottom line is that declaratively defining the meaning of trust and
obtaining estimates of the decidability or complexity of trust can be difficult.
Yet formally defining trust in terms of (declarative) belief or knowledge of be-
havioural correctness turns out to be natural, since humans often naturally refer

5 Cloud computing is automated outsourcing of IT (data storage, calculation routines)
into evolving opaque clouds of anonymous computing units.

124

to these or similar notions when informally explaining what they mean by trust.
In distributed or multi-agent systems, attaining an individual consciousness of
trust in terms of belief (weak trust) or knowledge (strong trust) from agent to
agent can be computationally tractable. Whereas attaining a collective conscious-
ness (mutual awareness) of trust in terms of common belief or knowledge in a
greater domain (e.g., a cluster, cloud, or other collectives) of agents is compu-
tationally intractable. Computationally speaking, collective trust does not scale.
Trust domains should be family-sized, so to speak.

1.2 Goal

Our goal is four-fold, namely:

1. to provide computational, declarative definitions for trust relations between
interacting agents, and trust domains of trust-related agents in distributed
systems

2. to obtain computational complexity results for deciding trust relationships
and membership in trust domains

3. to instantiate our concepts of trust relations and trust domains in four major
applications of trust, namely: Trusted Third Parties (TTPs), the Web of
Trust, Public-Key Infrastructures (PKIs), and Identity-Based Cryptography
(ID-Based Cryptography).

4. to point out limited computational means for building trust, and by that,
building up trust relations and trust domains in computer-communication
networks.

Contribution To the best of our knowledge, general formal definitions for trust
domains, general complexity results for trust relations as well as trust domains, a
positive (negative) compositionality result for strong (weak) trust domains, and
a generic formalisation of trust in TTPs, the Web of Trust, PKIs, and ID-Based
Cryptography are all novel. The resulting (in)tractability insights are of great
practical importance for cryptographic-key management, and could may well be
similarly important for computing clouds, which we believe should be conceived
as trust domains, and for which trust is the underlying premise [21].

1.3 Methodology

Our methodology is to develop our formal definitions for trust relations and trust
domains in a framework that is a semantically defined, standard modal logic of
belief and knowledge (cf. Section 2). In that, we are interested in the descriptive
(as opposed to deductive) use of an off-the-shelf, general-purpose (as opposed
to special-purpose, e.g., the famous BAN-logic, which uses but does not define
trust) logic that is as simple as possible and as complex as necessary—both syn-
tactically and semantically as well as computationally. Our defining principle for
weak and strong trust is belief in and knowledge of agent correctness, respec-
tively. We then derive our complexity results for deciding trust relationships and

125

membership in trust domains by reduction to known results for the complexity
of belief and knowledge (cf. Section 3). In spite of the practical significance of
our results, their derivation is quite simple (which increases their value), thanks
to our modal logical framework. The difficulty was to find what we believe to
be an interesting formal point of view on trust, which happens to be modal.
Other points of view have, to the best of our knowledge, not resulted in general
(in)tractability insights into trust, nor a positive (negative) compositionality re-
sult for strong (weak) trust domains, nor a generic formalisation of TTPs as well
as trust in the Web of Trust, PKIs, and ID-Based Cryptography (cf. Section 4).

2 Formal definitions

We develop our formal definitions of trust relations and trust domains in a
framework that is a semantically defined, standard modal logic of common belief
and knowledge. The logic is parametric in the notion of agent correctness, to be
instantiated for each considered distributed system (cf. Appendices C.2–C.4 for
our three examples).

Let S designate the considered distributed system (e.g., of sub-systems).

Definition 1 (Framework). Let

– A designate an arbitrary finite set of unique agent names6 a, b, c, etc.
– C ⊆ A denote (finite and not necessarily disjoint) communities of agents

(referred to by their name)
– P := { correct(a) | a ∈ A } designate our (finite) set of atomic propositions
P for referring to agent correctness

– L 3 φ ::= P
∣∣ ¬φ ∣∣ φ∧ φ ∣∣ CBC(φ)

∣∣ CKC(φ) designate our modal language
of formulae φ, with CBC(φ) for “it is common belief in the community C that
φ”, and CKC(φ) for “it is common knowledge in the community C that φ”.

Then given the set S (the state space) of system states s induced by S (e.g., via
a reachability or, in modal jargon, temporal accessibility relation)7, we define the
satisfaction relation |= of our framework in Table 1. There,

– “:iff” abbreviates “by definition, if and only if”
– (S,V) designates the (modal) model of our framework
– S := (S, {Da}a∈A, {Ea }a∈A) designates the (modal) frame with appropriate

(for the system S)
• serial8, transitive, and Euclidean9 relations Da ⊆ S × S of doxastic

accessibility (used for defining belief)

6 i.e., agent names injectively map to agents (here, names are identifiers)
7 For example, suppose that there is a set Si of initial states for every system S, T

designates the system’s reachability or, synonymously, temporal accessibility rela-
tion, and T∗ designates the reflexive transitive closure of T. Then, S is induced by
S in that sense that S := { s | there is si ∈ Si such that si T∗ s }.

8 for all s ∈ S, there is s′ ∈ S s.t. s Da s
′

9 for all s, s′, s′′ ∈ S, if s Da s
′ and s Da s

′′ then s′ Da s
′′

126

Table 1. Satisfaction relation

(S,V), s |= P :iff s ∈ V(P)

(S,V), s |= ¬φ :iff not (S,V), s |= φ

(S,V), s |= φ ∧ φ′ :iff (S,V), s |= φ and (S,V), s |= φ′

(S,V), s |= CBC(φ) :iff for all s′ ∈ S, if s D+
C s
′ then (S,V), s′ |= φ

(S,V), s |= CKC(φ) :iff for all s′ ∈ S, if s E∗C s
′ then (S,V), s′ |= φ

• equivalence relations Ea ⊆ S × S of epistemic accessibility (e.g., state
indistinguishability, used for defining knowledge)

such that Da ⊆ Ea for any a ∈ A
– V : P → 2S designates the valuation function (returning for every P ∈ P

the set of states where P is true) to be defined according to the appropriate
notion of agent correctness for the system S (e.g., see Appendix C)

– D+
C designates the transitive closure of

⋃
a∈C Da

– E∗C designates the reflexive transitive closure of
⋃

a∈C Ea.

Note that defining (common) belief and knowledge abstractly with a serial,
transitive, and Euclidean relation, and an equivalence relation, respectively, has
emerged as a common practice that gives greater generality over more concrete
approaches [27, Section 7.1]: the concrete definitions of the accessibility relations
can be freely determined for a given distributed system provided they comply
with the prescribed, characteristic properties. Typically, these definitions involve
the projection of global states onto agents’ local views [13]. For example, let
a ∈ A, and let πa designate such a projection (function) for a. Then, epistemic
accessibility in the sense of state indistinguishability can be defined such that
for all s, s′ ∈ S,

s Ea s
′ :iff πa(s) = πa(s′),

which guarantees that Ea is an equivalence relation. Doxastic accessibility Da ⊆
Ea can be defined from Ea by weakening the reflexivity of Ea to seriality as
appropriate for the considered application.

Further note the following macro-definitions: φ ∨ φ′ := ¬(¬φ ∧ ¬φ′), > :=
correct(a)∨¬correct(a), ⊥ := ¬>, φ→ φ′ := ¬φ∨φ′, φ↔ φ′ := (φ→ φ′)∧(φ′ →
φ), Ba(φ) := CB{a}(φ) (for “a believes that φ”), and Ka(φ) := CK{a}(φ) (for “a
knows that φ”). Likewise we now obtain our declarative definitions of weak and
strong trust relations and domains as mere macro-definitions, i.e., as simple
syntactic constructions of semantically defined building blocks (cf. Table 2, con-
junction over C = ∅ being >). Note that we could dually define weak and strong
distrust relations, i.e., as belief in and knowledge of agent incorrectness, respec-
tively, which use verb-phrase negation. The reader is invited not to confuse dis-
trust with absence of trust, e.g., with ¬Ba(correct(b)) or ¬Ka(correct(b)), which
use sentence negation. Further note that we could define weak-strong (dis)trust
domains and strong-weak (dis)trust domains, i.e., as the common knowledge of
weak (dis)trust relations, and the common belief of strong (dis)trust relations,

127

Table 2. Weak and strong trust relations and domains

a wTrusts b := Ba(correct(b)) a weakly trusts b
wTD(C) := CBC(

∧
a,b∈C a wTrusts b) C is a weak trust domain.

a sTrusts b := Ka(correct(b)) a strongly trusts b
sTD(C) := CKC(

∧
a,b∈C a sTrusts b) C is a strong trust domain.

respectively. The difference between weak and strong trust is induced by the dif-
ference between belief and knowledge, respectively: weak trust possibly is wrong
(i.e., mistaken belief), whereas strong trust necessarily is right (i.e., truthful
belief).

Social networking systems furnish evidence for the adequacy of defining trust
domains in terms of common knowledge or at least belief. As a matter of fact,
the enumeration of “friends” on a member page in such systems constitutes a
public announcement to the readers of that page who are logged in, who see
all logged-in readers, etc. And it is common knowledge in the community of
(dynamic) epistemic logicians that public announcements of (verifiable) elemen-
tary facts induce common knowledge within the addressed public (cf. [34] for a
public announcement). So, suppose that you are a member of Facebook, and C
designates the set consisting of you and those of your “friends” that are enu-
merated on your member page. Further, fix the current moment in time, and
call it s. (We may talk about time here; see Footnote 7.) Then the formula∧

a,b∈C a sTrusts b ↔ sTD(C) is true at s (with no outermost CKC operator on
the left since the aforementioned public announcement implies it). The formula
is a (bi-)conditional because we have not fixed the notion of agent correctness
for Facebook (they should). Note that the trust relations between you and your
“friends” are symmetric, because each “friend” had to give their consent for hav-
ing the privilege of being enumerated as such on your member page in Facebook.

Definition 2 (Truth & Validity). The formula φ is true (or satisfied) in the
model (S,V) at the state s ∈ S :iff (S,V), s |= φ. The formula φ is satisfiable
in the model (S,V) :iff there is s ∈ S such that (S,V), s |= φ. The formula φ
is globally true (or globally satisfied) in the model (S,V), written (S,V) |= φ,
:iff for all s ∈ S, (S,V), s |= φ. The formula φ is satisfiable :iff there is a model
(S,V) and a state s ∈ S such that (S,V), s |= φ. The formula φ is valid, written
|= φ, :iff for all models (S,V), (S,V) |= φ. (cf. [5])

Fact 1 (Common belief) Being defined in terms of a serial, transitive, and
Euclidean relation, CB{a} is KD45 for any a ∈ C ⊆ A, i.e.:

K: |= CBC(φ→ φ′)→ (CBC(φ)→ CBC(φ
′)) (Kripke’s law)

D: |= CB{a}(φ)→ ¬CB{a}(¬φ) (consistency of beliefs, seriality)
4: |= CBC(φ)→ CBC(CBC(φ)) (positive introspection, transitivity)
5: |= ¬CBC(φ)→ CBC(¬CBC(φ)) (negative introspection, Euclideanness)
N: if |= φ then |= CBC(φ) (necessitation).

128

Further, let EBC(φ) :=
∧

a∈C Ba(φ) (“everybody in C believes that φ”). Then:

– |= CBC(φ)→ EBC(φ)
– |= CBC(φ)→ EBC(CBC(φ))
– |= CBC(φ→ EBC(φ))→ (EBC(φ)→ CBC(φ)).

For details see [27, Section 7.1].

The difference between belief and knowledge is that belief possibly is wrong
(cf. the D law), whereas knowledge necessarily is right (cf. the following T law).

Fact 2 (Common knowledge) Being defined in terms of an equivalence rela-
tion, CKC is S5 for any C ⊆ A, i.e.:

K: |= CKC(φ→ φ′)→ (CKC(φ)→ CKC(φ
′)) (Kripke’s law)

T: |= CKC(φ)→ φ (truth law, reflexivity)
4: |= CKC(φ)→ CKC(CKC(φ)) (positive introspection)
5: |= ¬CKC(φ)→ CKC(¬CKC(φ)) (negative introspection)
N: if |= φ then |= CKC(φ) (necessitation).

Further, let EKC(φ) :=
∧

a∈C Ka(φ) (“everybody in C knows that φ”). Then:

– |= CKC(φ)→ EKC(CKC(φ))
– |= CKC(φ→ EKC(φ))→ (φ→ CKC(φ)).

For details see [27, Section 7.1].

Note that depending on the properties of the employed communication lines,
common knowledge may have to be pre-established, i.e., off those lines [15].

Fact 3 (Knowledge versus belief) For all C ⊆ A, |= CKC(φ) → CBC(φ). In
particular when C = {a}, |= Ka(φ)→ Ba(φ).

Proof. By the fact that for all a ∈ A, Da ⊆ Ea (cf. Definition 1).

The following corollary is immediate.

Corollary 1 (Strong versus weak trust).

1. For all a, b ∈ A, |= a sTrusts b→ a wTrusts b.
2. For all C ⊆ A, |= sTD(C)→ wTD(C).

Trust relations and trust domains can be related as follows.

Proposition 1 (Trust relations and domains). In trust domains, trust rela-
tions are universal (i.e., correspond to the Cartesian product on those domains).
That is, for all a, b ∈ C, |= wTD(C)→ a wTrusts b and |= sTD(C)→ a sTrusts b.

Proof. Almost by definition of weak and strong trust relations and domains.

Hence in trust domains, trust relations are equivalence relations. (The universal
relation contains all other relations.)

129

Corollary 2 (Trust relations and domains). In trust domains, trust re-
lations are (a, b, c ∈ C ⊆ A): reflexive (i.e., |= wTD(C) → a wTrusts a and
|= sTD(C) → a sTrusts a), symmetric (i.e., |= wTD(C) → (a wTrusts b →
b wTrusts a) and |= sTD(C) → (a sTrusts b → b sTrusts a)), and transi-
tive (i.e., |= wTD(C) → ((a wTrusts b ∧ b wTrusts c) → a wTrusts c) and
|= sTD(C)→ ((a sTrusts b ∧ b sTrusts c)→ a sTrusts c)).

A more interesting condition for the transitivity of trust relations than their
universality is knowledge (which is implied in strong trust domains by common
knowledge) in the following sense.

Lemma 1 (Transitivity Lemma).

1. |= Ba(b sTrusts c)→ a wTrusts c
2. |= Ka(b sTrusts c)→ a sTrusts c.

Proof. The first validity follows from T(Kb) and |= (Ba(φ)∧(φ→ φ′))→ Ba(φ′),
and the second from T(Kb) and |= (Ka(φ) ∧ (φ→ φ′))→ Ka(φ′).

Note that b acts as a reference of c’s trustworthiness to a. This is an important
concept for applications. An example is the construction of transitive trust paths,
e.g., of length 3: |= Ba(b sTrusts c)→ ((a wTrusts b∧ b wTrusts c)→ a wTrusts c)
and |= Ka(b sTrusts c)→ ((a sTrusts b ∧ b sTrusts c)→ a sTrusts c), respectively.

Fact 4 1. 6|= Ba(b wTrusts c)→ a wTrusts c
2. 6|= Ka(b wTrusts c)→ a wTrusts c.

Proof. By the absence of the T-law for Bb.

Here are some simple facts about trust domains.

Proposition 2 (Trust domains).

0. |= wTD(∅) and |= sTD(∅)
1. Separating a trust domain:
|= wTD(C ∪ C′)→ (wTD(C) ∧ wTD(C′))
|= sTD(C ∪ C′)→ (sTD(C) ∧ sTD(C′))

2. |= (wTD(C) ∧ wTD(C′))→ wTD(C ∩ C′)
|= (sTD(C) ∧ sTD(C′))→ sTD(C ∩ C′)

3. if C ⊆ C′ then |= wTD(C′)→ wTD(C) and |= sTD(C′)→ sTD(C).

Proof. Straightforward from definitions.

Now consider a more complex fact about (actually an insight into) trust domains.

Theorem 1 (Merging strong trust domains). Merging two strong trust do-
mains is compositional in the sense that a necessary and sufficient condition for
merging two strong trust domains is that it be common knowledge in the union
of both domains that each domain is a strong trust domain. Formally, for all
C, C′ ⊆ A,

|= CKC∪C′(sTD(C) ∧ sTD(C′))↔ sTD(C ∪ C′).

130

Proof. See Appendix A.

Note that there is no analogous result for weak trust domains due to Fact 4.
That is, merging weak trust domains is non-compositional in the sense that
the result of merging two weak trust domains is not necessarily again a weak
trust domain — not even when there is common knowledge (instead of only
common belief) in the union of both domains that each domain is a weak trust
domain (cf. Fact 4.2). The theorem yields a simple, though computationally in-
trinsically costly design pattern for recursively building up strong trust domains
(cf. Appendix B). Again, due to the absence of an analogous theorem for weak
trust domains, there is no analogous design pattern either. Hence, there really
is a strong practical interest in strong trust domains. As a matter of fact, this
practical interest is even stronger because checking membership in strong trust
domains is computationally no more complex (up to a constant) than checking
membership in weak trust domains (cf. Section 3).

We continue to define potential trust between two agents a, called potential
truster, and b, called potential trustee, and within communities C. The idea is to
define potentiality as satisfiability.

Definition 3 (Potential trust).

– There is a potential weak (strong) trust relationship between a and b in the
system S :iff a wTrusts b (a sTrusts b) is satisfiable in the model (S,V)
induced by S.

– The community C is a potential weak (strong) trust domain in the system S
:iff wTD(C) (sTD(C)) is satisfiable in the model (S,V) induced by S.

Similarly, we define actual trust between two agents a, called truster, and b,
called trustee, and within communities C. The idea is to define (two degrees of)
actuality as (two degrees of) satisfaction.

Definition 4 (Actual trust).

– There is a weak (strong) trust relationship between a and b in the model
(S,V) at the state s ∈ S :iff a wTrusts b (a sTrusts b) is satisfied in (S,V)
at s.

– There is a weak (strong) trust relationship between a and b in the model
(S,V) :iff a wTrusts b (a sTrusts b) is globally satisfied in (S,V).

– The community C is a weak (strong) trust domain in the model (S,V) at the
state s ∈ S :iff wTD(C) (sTD(C)) is satisfied in (S,V) at s.

– The community C is a weak (strong) trust domain in the model (S,V) :iff
wTD(C) (sTD(C)) is globally satisfied in (S,V).

Since satisfaction implies satisfiability, but not vice versa, actual trust implies
potential trust, but not vice versa. For example, if two agents do not even know
each other then they can not be in an actual trust relationship. However, they
may be in a potential trust relationship: maybe in another system state, their
trust potential can become actualised. On the other hand, in a given system two
agents may well know each other but not be in a potential trust relationship:
the system may be designed so that trust between them is impossible — in any
system state.

131

Table 3. Computational time complexities

Trust relations Trust domains

degree
weak

a wTrusts b
strong

a sTrusts b
weak

wTD(C)
strong
sTD(C)

actual
local satisfaction in models (S,V) and states s

O(fS(|s|)) O(2|C|·fS(|s|))global satisfaction in models (S,V)
potential satisfiability in models (S,V)

Recall that there is a universal quantification over states s in the definition of global satisfaction, and an existential
quantification over states s in the definitions of satisfiability in models.

3 Complexity results

We obtain our complexity results for deciding trust relationships and member-
ship in trust domains by reduction to known results for the complexity of com-
mon belief and knowledge (cf. [17] and [16]). As usual for logics, the valuation
function (here V) acts as an oracle, which is assumed to decide in a single step
whether or not an atomic proposition is true at the current state in the model
induced by the considered distributed system S. However, deciding agent cor-
rectness is not trivial and depends on S. For example, in our applications (cf.
Appendix C), deciding agent correctness can be at least polynomial in the size
of the current state, which depending on the system modelling, may contain the
history of system events. Another example is the case study in [24], where de-
terministically deciding agent correctness is quadratic in the size of the current
state (containing the history of system events). The notion of state size really is
system-specific. For example, when states contain the history of system events,
state size can be defined as history length. Hence, we may have to account for
the complexity of deciding agent correctness in the complexity of deciding trust
relationships and membership in trust domains.

So, suppose that the truth of each atomic proposition can be determinis-
tically decided in a polynomial number fS(|s|) of steps in the size |s| of the
state s of the model (S,V) induced by S. We recall that since potential trust
is defined in terms of satisfiability, and actual trust in terms of satisfaction, and
since decidability of satisfiability implies decidability of satisfaction, decidabil-
ity of potential trust implies decidability of actual trust, and complexities of
potential trust are upper bounds for complexities of actual trust. Furthermore,
satisfiability and validity are inter-solvable (φ is valid iff ¬φ is not satisfiable),
and satisfiability complexities yield satisfaction (model-checking) complexities.

Theorem 2. The computational time complexities of deterministically deciding
trust relations is O(fS(|s|)) for potential and actual, weak and strong trust (cf.
Table 3).

Proof. Notice that our definitions of trust relations refer to a finite number (i.e.,
|P|) of atomic propositions P , and that each definition uses exactly one atomic
proposition (e.g., correct(b)) and exactly one modal operator (e.g., Ba or Ka).
Now according to [17], the complexity of the satisfiability of formulae Ba(φ)
and Ka(φ) in a language with a finite number of atomic propositions and a

132

bounded nesting depth of modal operators Ba and Ka is in (oracle) linear time
in the length (here constantly 1) of the formula. Hence, the complexity of the
satisfiability of formulae expressing weak and strong trust relations is even in
(oracle) constant time, and thus O(fS(|s|)) without oracle. Yet O(fS(|s|)) is an
absolute lower bound and thus the complexity of all trust relationships.

We can learn at least two lessons from these results. The first lesson is that
we do have to account for the complexity of deciding agent correctness in the
complexity of deciding trust relationships. The second lesson is that, surprisingly,
deciding agent correctness is, up to a constant, equionerous to deciding potential
and actual as well as weak and strong trust relationships.

Theorem 3. The computational time complexities of deterministically deciding
trust domains is O(2|C|·fS(|s|)) for potential and actual, weak and strong trust
(cf. Table 3).

Proof. According to [16], the complexity of the satisfiability of formulae CBC(φ)
and CKC(φ) is in (oracle) deterministic single exponential time in the length of
the sub-formula φ. The intuition is that formulae CBC(φ) and CKC(φ) corre-
spond to formulae of infinitely deeply nested operators Ba and Ka with a ∈ C,
respectively, and that in that case, a finite number of atomic propositions does
not help. In our case, the length of the conjunctive sub-formula in wTD(C) and
sTD(C) is polynomial in the size |C| of the community C. Further, the complexity
of each conjunct is O(fS(|s|)), which we assumed to be polynomial. Yet a single
exponential of a polynomial cost is still “only” a single exponential cost. Hence,
the complexity of the satisfiability of formulae wTD(C) and sTD(C) is determin-
istic single exponential time in the size of C times fS(|s|). That is, the complexity
of membership in potential weak and strong trust domains is O(2|C|·fS(|s|)). Fi-
nally according to [16], the operators CBC and CKC force satisfying models of
a size that is exponential in |C|. Hence, O(2|C|·fS(|s|)) is the complexity of all,
potential or actual, memberships problems.

4 Related work

There is a huge literature on notions of trust that are not formal in the sense of
formal languages and semantics, and also on trust management, which however
is not the subject matter of this paper. We are aware of the following formal
work related to ours.

4.1 Trust relations

As explained in the introduction, [11] presents various kinds of trust relations
based on belief in and knowledge of mental attitudes, which is less general than
belief in or knowledge of agent behaviour.

In [39], trust relationships are defined as four-tuples of a set R of trusters, a
set E of trustees, a set C of conditions, and a set P of properties (the actions or

133

attributes of the trustees). Thereby, conditions and properties are fully abstract,
i.e., without pre-determined form. According to the authors, “Trust relationship
T means that under the condition set C, truster set R trust that trustee set
E have the properties in set P .”, where the meaning of “trust that” is formally
primitive and thus left to interpretation. Given that trust can possibly be wrong,
a plausible interpretation of “trust that” could be “believe that” (rather than
“know that”). The authors then define operations on trust relationships in terms
of set-theoretic operations on the projections of their tuples. We attempt to relate
the authors’ notion of trust relationship to our notion of weak trust relation
(based on belief rather than knowledge) by coercing their definition of T in the
following macro-definition of our logic, assuming their P is included in our P:

T (C,R,E, P) := (
∧
c∈C

c)→
∧
r∈R

Br(
∧
e∈E

∧
p∈P

p(e)).

If the authors agree with this coercion, we have the following definability result:

|= T ({>}, {a}, {b}, {correct})↔ a wTrusts b,

where correct is an attribute in the authors’ sense.

In [18], so-called trust in belief and trust in performance are formalised in
the situation calculus, such that “axioms and theorems can be used to infer
whether a thing can be believed”. Whereas we define (weak) trust in agents,
and moreover in terms of belief taken off-the-shelf as a standard primitive. In
[19], the ideas of trust in belief and trust in performance are taken up again
similarly.

In [36], “trust is a state at which the host believes, expects, or accepts that
the effects from the cleint are the positive”, although belief is not formal in the
sense of modal logic. The authors’ idea is that “the host’s trust on a client is
obtained based on the trust evaluation of the client by the host. When the host
trusts a client, the host will believe, expect or accept that the client will do no
harm to the host in the given context”. Hence, this notion of trust is agent-
centric in the sense of being defined in terms of (local) effects at an agent’s
location. This is a less general notion of trust than ours, which is systemic in
the sense of being defined in terms of correct agent behaviour within a certain
system. Also, we recall again that agent correctness is a standard primitive in
the distributed-systems community [26].

In [9], a domain-theoretic model of trust relations between agents is pre-
sented. In that model, a given directed trust relation from a truster to a trustee
is abstracted as a value reflecting the truster’s degree of trust in the trustee. Thus,
[9]’s notion of trust is, as opposed to ours, quantitative, but, as opposed to ours,
lacks a behavioural (e.g., in terms of agent correctness) and doxastic/epistemic
explication (in terms of belief/knowledge). The purpose of the model is the def-
inition of a unique global trust state arising from the trust relations between
the agents via trust policies. Complexities for computing portions of that global
state are given in [25].

134

4.2 Trust domains

To the best of our knowledge, the only formal piece of work on trust domains is
[38], based on description logic. However, the authors’ definition is a conceptual
modelling of trust domains limited to PKIs.

5 Conclusion

Assessment We have provided simple, smooth definitions and complexity results
for multi-agent trust in a single, standard framework. More precisely, we have
delivered definitions for weak and strong trust relations and trust domains, as
well as potential and actual trust relationships and membership in trust domains.
All our definitions have the advantage of being declarative and computational,
as well as being parametric in the notion of agent correctness. Thanks to being
declarative, our definitions are independent of the manifold manifestations of
trust establishment (e.g., via recommendations and/or reputation). They are
meaningful in any concrete distributed system with a notion of agent correctness
and state space. We recall that agent correctness is a primitive in the distributed-
systems community [26], and that state space is forced in a world of digital
computers. A surprising insight gained from our computational analysis of trust
is that given weak trust, strong trust is for free (up to a constant) from the point
of view of complexity theory. Finally, we have shown that our trust domains are
fit as such for TTPs and the Web of Trust, and that with a minor modification in
the form of a constraint, they can be made to fit PKIs, ID-Based Cryptography,
and others.

Future work We could unify our notions of weak and strong trust relation (trust
domain) in a notion of graded trust relation (graded trust domain) defined in
terms of graded (common) belief instead of plain (common) belief and plain
(common) knowledge, respectively [23]. Informally, knowledge is belief with 100%
certitude. With the additional introduction of temporal modalities, it then be-
comes possible to study the evolution of the quality and quantity of trust in a
given distributed system, by observing the evolution of the grade of each trust
relation and trust domain in the system. Finally, we could build actual trust-
management systems for trust relations and trust domains in our present sense
of building trust from absence of trust and in a future sense of rebuilding trust
from distrust.

Acknowledgements The first author thanks Jean-Luc Beuchat, Akira Kanaoka,
Kanta Matsuura and the members of his laboratory, and Andrey Rybalchenko
for stimulating discussions.

References

1. Cloud computing. http://csrc.nist.gov/groups/SNS/cloud-computing/index.
html.

135

2. R. Anderson. Security Engineering: A Guide to Building Dependable Distributed
Systems. Wiley, second edition, 2008.

3. R. Anderson, B. Crispo, J.-H. Lee, Ch. Manifavas, V. Matyas, and F. Petitcolas.
The Global Internet Trust Register. The MIT Press, 1999.

4. C. Areces and B. ten Cate. Handbook of Modal Logic, chapter Hybrid Logics.
Volume 3 of Blackburn et al. [6], 2007.

5. P. Blackburn and J. van Benthem. Handbook of Modal Logic, chapter Modal Logic:
A Semantic Perspective. Volume 3 of Blackburn et al. [6], 2007.

6. P. Blackburn, J. van Benthem, and F. Wolter, editors. Handbook of Modal Logic,
volume 3 of Studies in Logic and Practical Reasoning. Elsevier, 2007.

7. C. Boyd and A. Mathuria. Protocols for Authentication and Key Establishment.
Springer, 2003.

8. J. Bradfield and C. Stirling. Handbook of Modal Logic, chapter Modal Mu-Calculi.
Volume 3 of Blackburn et al. [6], 2007.

9. M. Carbone, M. Nielsen, and V. Sassone. A formal model for trust in dynamic
networks. In Proceedings of the IEEE Conference on Software Engineering and
Formal Methods, 2003.

10. B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Cambridge
University Press, 1990 (2002).

11. R. Demolombe. Reasoning about trust: A formal logical framework. In Proceedings
of the Conference on Trust Management, volume 2995 of LNCS. Springer, 2004.

12. D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions
on Information Theory, 29(12), 1983.

13. R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi. Reasoning about Knowledge.
MIT Press, 1995.

14. E. Gallery and Ch.J. Mitchell. Trusted computing: Security and applications.
Cryptologia, 33(3), 2009.

15. J.Y. Halpern and Y. Moses. Knowledge and common knowledge in a distributed
environment. Journal of the ACM, 37(3), 1990.

16. J.Y. Halpern and Y. Moses. A guide to completeness and complexity for modal
logics of knowledge and belief. Artificial Intelligence, 54(3), 1992.

17. J.Y. Halpern and Y. Moses. The effect of bounding the number of primitive propo-
sitions and the depth of nesting on the complexity of modal logic. Artificial Intel-
ligence, 75(2), 1995.

18. J. Huang and M.S. Fox. An ontology of trust — formal semantics and transitivity.
In Proceedings of the ACM Conference on Electronic Commerce, 2006.

19. J. Huang and D. Nicol. A calculus of trust and its application to PKI and identity
management. In Proceedings of the ACM Symposium on Identity and Trust on the
Internet, 2009.

20. M. Joye and G. Neven. Identity-Based Cryptography. IOS Press, 2009.
21. L.M. Kaufman. Data security in the world of cloud computing. IEEE Security &

Privacy, 7(4), 2009.
22. S. Kramer, R. Goré, and E. Okamoto. Formal definitions and complexity results

for trust relations and trust domains fit for TTPs, the Web of Trust, PKIs, and
ID-Based Cryptography. Logic Column of ACM SIGACT News, March 2010.

23. S. Kramer, C. Palamidessi, R. Segala, A. Turrini, and Ch. Braun. A quantitative
doxastic logic for probabilistic processes and applications to information-hiding.
Journal of Applied Non-Classical Logic, 19(4), 2009.

24. S. Kramer and A. Rybalchenko. A multi-modal framework for achieving account-
ability in multi-agent systems. In Proceedings of the ESSLLI-affiliated Workshop
on Logics in Security, 2010.

136

25. K. Krukowa and A. Twigg. The complexity of fixed point models of trust in
distributed networks. Theoretical Computer Science, 389(3), 2007.

26. N.A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.
27. J.-J. Meyer and F. Veltnam. Handbook of Modal Logic, chapter Intelligent Agents

and Common Sense Reasoning. Volume 3 of Blackburn et al. [6], 2007.
28. B. Michael. In clouds shall we trust? IEEE Security & Privacy, 7(5), 2009.
29. L.C. Paulson. The inductive approach to verifying cryptographic protocols. Journal

of Computer Security, 6(1), 1998.
30. S. Ruohomaa and L. Kutvonen. Trust management survey. In Proceedings of the

Conference on Trust Management, volume 3477 of LNCS. Springer, 2005.
31. A. Jøsang, R. Ismail, and C. Boyd. A survey of trust and reputation systems for

online service provision. Decision Support Systems, 43(2), 2007.
32. B. Schneier. Security, group size, and the human brain. IEEE Security & Privacy,

7(4), 2009.
33. A. Tiu and R. Goré. A proof theoretic analysis of intruder theories. volume 5595

of Lecture Notes in Computer Science. Springer, 2009.
34. H. van Ditmarsch, W. van der Hoek, and B. Kooi. Dynamic Epistemic Logic,

volume 337 of Synthese Library. Springer, 2007.
35. H.C.A. van Tilborg, editor. Encyclopedia of Cryptography and Security, pages

398–400. Springer, 2005.
36. D. Xiu and Z. Liu. A formal definition for trust in distributed systems. In Pro-

ceedings of the Information Security Conference, volume 3650 of LNCS. Springer,
2005.

37. A. Yao. Protocols for secure computations. In Proceedings of the IEEE Symposium
on Foundations of Computer Science, 1982.

38. H. Yu, Ch. Jin, and H. Che. A description logic for PKI trust domain modeling. In
Proceedings of the IEEE Conference on Information Technology and Applications,
2005.

39. W. Zhao, V. Varadharajan, and G. Bryan. Analysis and modelling of trust in
distributed information systems. In Proceedings of the Conference on Information
Systems Security, volume 3803 of LNCS. Springer, 2005.

40. Ph. Zimmermann. http://www.philzimmermann.com/.

137

A A formal proof

We recall the laws |= (CKC(φ)∧ (φ→ φ′))→ CKC(φ
′), |= (CKC(φ)∧CKC(φ′))↔

CKC(φ ∧ φ′), and |= CKC∪C(φ) → (CKC(φ) ∧ CKC′(φ)); and call them L1(CKC),
L2(CKC), and L3(CKC), respectively. Now, let S designate an arbitrary frame
for our logic, and V an arbitrary valuation function for agent correctness. Then:

1 s ∈ S hyp.

2 (S,V), s |= CKC∪C′(sTD(C) ∧ sTD(C′)) hyp.

3 (S,V), s |= CKC∪C′(sTD(C)) ∧ CKC∪C′(sTD(C′)) 2, L2(CKC∪C′)

4 (S,V), s |= CKC∪C(sTD(C)) and (S,V), s |= CKC∪C′(sTD(C′)) 3, def.

5 (S,V), s |= sTD(C)→
∧

a,b∈C a sTrusts b T(CKC)

6 (S,V), s |= sTD(C′)→
∧

a,b∈C′ a sTrusts b T(CKC′)

7 (S,V), s |= CKC∪C′(
∧

a,b∈C a sTrusts b) 4, 5 L1(CKC∪C′)

8 (S,V), s |= CKC∪C′(
∧

a,b∈C′ a sTrusts b) 4, 6 L1(CKC∪C′)

9 (S,V), s |= CKC∪C′(
∧

a,b∈C a sTrusts b) and
(S,V), s |= CKC∪C′(

∧
a,b∈C′ a sTrusts b) 7, 8

10 (S,V), s |= CKC∪C′(
∧

a,b∈C a sTrusts b) ∧
(S,V), s |= CKC∪C′(

∧
a,b∈C′ a sTrusts b) 9, def.

11 (S,V), s |= CKC∪C′

(∧
a,b∈C a sTrusts b ∧∧
a,b∈C′ a sTrusts b

)
10, L2(CKC∪C′)

12 (S,V), s |= CKC∪C′(
∧

a,b∈C∪C′ a sTrusts b) 11, Lemma 1.2

13 (S,V), s |= sTD(C ∪ C′) 12, def.

14 (S,V), s |= sTD(C ∪ C′) hyp.

15 (S,V), s |= CKC∪C′(
∧

a,b∈C∪C′ a sTrusts b) 14, def.

16 (S,V), s |= CKC∪C′

(∧
a,b∈C a sTrusts b ∧∧
a,b∈C′ a sTrusts b

)
15

17 (S,V), s |= CKC∪C′(CKC∪C′

(∧
a,b∈C a sTrusts b ∧∧
a,b∈C′ a sTrusts b

)
) 16, 4(CKC∪C′)

18 (S,V), s |= CKC∪C′(
∧

a,b∈C a sTrusts b) ∧
(S,V), s |= CKC∪C′(

∧
a,b∈C′ a sTrusts b) 16, L2(CKC∪C′)

19 (S,V), s |= CKC(
∧

a,b∈C a sTrusts b) ∧
(S,V), s |= CKC′(

∧
a,b∈C′ a sTrusts b) 18, L3(CKC∪C′)

20 (S,V), s |= sTD(C) ∧ sTD(C′) 19, def.

21 (S,V), s |= CKC∪C′

(∧
a,b∈C a sTrusts b ∧∧
a,b∈C′ a sTrusts b

)
→ (sTD(C) ∧ sTD(C′)) 20

22 (S,V), s |= CKC∪C′(sTD(C) ∧ sTD(C′)) 17, 21, L1(CKC∪C′)

23 (S,V), s |= sTD(C ∪ C′) if and only if
(S,V), s |= CKC∪C′(sTD(C) ∧ sTD(C′)) 2–13, 14–22

138

24 for all s ∈ S, (S,V), s |= CKC∪C′(sTD(C) ∧ sTD(C′))↔ sTD(C ∪ C′) 1–23

25 (S,V) |= CKC∪C′(sTD(C) ∧ sTD(C′))↔ sTD(C ∪ C′) 24

B Building trust

Building trust in the sense of building from absence of trust (as opposed to
rebuilding from distrust, cf. 2nd paragraph after Definition 1) is possible if and
only if there is at least potential trust in the sense of Definition 3. That is, given
a, b ∈ A and C ⊆ A, the formulae a wTrusts b or a sTrusts b, and wTD(C) or
sTD(C) must at least be satisfiable in the model induced by the considered system,
in order for a weak or strong trust relationship from a to b to possibly exist, and
in order for C to possibly be a weak or strong trust domain, respectively. Yet
thanks to the computability of our notions of trust, a computer can aid us in
our decision of whether or not building trust from a current absence of trust in
a given system, and between a given pair of agents, or within a given (small)
group of agents is actually possible.

When it is indeed possible to actualise a certain potential trust, the next
question is how to actually build up the trust. A potential trustee has at least
two non-mutally-exclusive possibilities of earning the trust of a potential truster:

1. by behaving correctly according to the notion of agent correctness (cf. correct)
of the system where the computer has found the considered kind of trust to
be actually possible. (Behaving correctly can include doing nothing, when
the considered notion of agent correctness does not exclude such inactivity.)

2. by producing evidence (e.g., a recommendation) for or proof (e.g., a signed
log file) of behavioural correctness, whenever requested to do so by the po-
tential truster (here in the role of an auditor).

The potential truster may then decide to trust the potential trustee based on the
observation of the potential trustee’s behaviour, and/or based on the knowledge
of certain data, i.e., evidence or even proof produced by the potential trustee.
Depending on the value of the information obtained, a relationship of weak or
strong trust is established from the potential truster to the potential trustee,
who have now become de facto an actual truster and trustee, respectively. This
process of building up oriented trust relations can be extended to building up
symmetric trust relationships, and trust domains of agents in such relationships.
As a matter of fact, Theorem 1 yields the following design pattern, called RD, for
building up via recursive descent strong trust domains from a possible absence
of trust in a given system. RD relies on the communication abstraction of public
announcement (cf. 3rd paragraph after Definition 1), which we use as a black-box
plug-in. We recall that the effect of a public announcement of a fact is to induce
the common knowledge of that fact with the addressed public by minimally
changing the epistemic state of each agent in that public (cf. [34] for details).
Depending on the communication context, the mechanism ranges from trivial
(e.g., in a public assembly) to difficult (e.g., with communication asynchrony),
possibly requiring implementation as a full-fledged communication protocol. So,

139

although ‘announcement’ may suggest triviality rather than difficulty, public
announcements may well be non-trivial to implement in a given context, which
is why we call RD design pattern rather than algorithm:

1. Input: a model (S,V), a state s, and C1, C2 ∈ A;
2. Divide: for i ∈ {1, 2} do {

when (S,V), s |= ¬sTD(Ci):
(a) divide Ci freely into Ci.1 and Ci.2;
(b) s := RD((S,V), s, Ci.1, Ci.2); };

3. Conquer: announce to the community C1∪C2 that sTD(C1)∧sTD(C2) is true
(choose appropriate communication channels and an appropriate protocol),
which takes the system from s to some s′ ∈ S such that s′ is reachable (cf.
Footnote 7) from s and

(S,V), s′ |= CKC∪C′(sTD(C) ∧ sTD(C′));

4. Output: s′ ∈ S;
5. Effect: (S,V), s′ |= sTD(C1 ∪ C2).

Building up trust domains from possible absence of trust generally is computa-
tionally costly, in particular when made by means of the recursive-descent design
pattern RD.

Theorem 4. The complexity of building up trust domains is exponential in the
number of potential members.

Proof. By the fact that membership in trust domains has to be checked for each
potential new member anew, which is exponential in the size of the trust domain
being checked in a given model and at a given state (cf. Table 3).

In contrast, it is common knowledge (among humans) that for destroying actual
trust relationships, and thus also trust domains, a single (side) step is sufficient
— metaphorically speaking. And rebuilding trust from distrust is difficult.

C Application to cryptographic-key management

We instantiate our concepts of trust relations and trust domains in four major
applications of trust, namely Trusted Third Parties (TTPs), the Web of Trust,
Public-Key Infrastructures (PKIs), and ID-Based Cryptography. For the latter
three, we will have to define the valuation function V on the atomic propositions
correct(a) about agent correctness (cf. Definition 1 and Table 2). (We will also
have to refine the definition of trust domains in Table 2 for the latter two.)
That is, each notion of agent correctness is specific10 to each system
rather than general to all systems. (Thus, trust is system-specific to
some extent.) However, we can define agent correctness generically for the
Web of Trust and PKIs, by means of the following, common auxiliary logic,

10 like policies, which induce notions of agent correctness, as mentioned in Section 1.1

140

called AuxLog. The logic is a modal fixpoint logic [8] operating on points that
are agents a ∈ A rather than states s ∈ S. AuxLog is parametric in a binary
relation R ⊆ A ×A to be fixed separately for the Web of Trust and PKIs, but
with the commonality of depending on a fixed state s (R ∈ {DTIs,CERTs}).

Definition 5 (Auxiliary Logic). Let X designate a countable set of proposi-
tional variables C, and let

L′ 3 α ::= OK
∣∣ C ∣∣ ¬α ∣∣ α ∧ α ∣∣ �α ∣∣ νC(α)

designate the language L′ of AuxLog where all free occurrences of C in α of
νC(α) are assumed to occur within an even number of occurrences of ¬ to guar-
antee the existence of (greatest) fixpoints (expressed by νC(α)) [8]. Then, given a
relation R ⊆ A×A decidable in deterministic constant time but structurally ar-
bitrary, and an auxiliary interpretation J·K : X ∪{OK} → 2A partially pre-defined
as

JOKK := { a ∈ A | at most a can access a’s private key }11,

the interpretation ‖ · ‖J·K : L′ → 2A of AuxLog-propositions is as follows:

‖C‖J·K := JCK
‖OK‖J·K := JOKK
‖¬α‖J·K := A \ ‖α‖J·K

‖α ∧ α′‖J·K := ‖α‖J·K ∩ ‖α′‖J·K
‖�α‖J·K := { a ∈ A | for all b ∈ A, if b R a then b ∈ ‖α‖J·K }

‖νC(α)‖J·K :=
⋃
{ A ⊆ A | A ⊆ ‖α‖J·K[C 7→A]

},

where J·K[C 7→A] maps C to A and otherwise agrees with J·K.
Further, α ∨ α′ := ¬(¬α ∧ ¬α′), > := α ∨ ¬α, ⊥ := ¬>, α→ α′ := ¬α ∨ α′,

α ↔ α′ := (α → α′) ∧ (α′ → α), ♦α := ¬�(¬α), and, notably, µC(α(C)) :=
¬νC(¬α(¬C)).

Finally, for all a ∈ A and α ∈ L′,

〈(A, R), J·K〉, a � α :iff a ∈ ‖α‖J·K,

and for all α ∈ L′,

� α :iff for all J·K and a ∈ A, 〈(A, R), J·K〉, a � α.

11 This phrasing can be made formal provided that a notion of data space D (including
keys) and data derivation for agents is fixed, e.g., à la Dolev-Yao [12]. Then data
derivation can be formalised as a relation ` ⊆ 2D × D (the first formalisation was
in terms of closure operators [29]), and the phrase “at most a can access a’s private
key” as “for all b ∈ A, if k is the private key of a and mb(s) ` k then b = a”,
where mb(s) returns the set of data that b generated or received as such in s. Note
however that depending on the structure of D, the computability of ` may range
from polynomial time to undecidability [33].

141

Table 4. Trustworthy Trusted Third Parties

wtTTP(c, a, b) := CB{a,b,c}(wTD({c, a}) ∧ wTD({c, b})) c is a weakly trustworthy TTP (wtTTP) of a and b

stTTP(c, a, b) := CK{a,b,c}(sTD({c, a}) ∧ sTD({c, b})) c is a strongly trustworthy TTP (stTTP) of a and b

The reader is invited not to confuse the auxiliary satisfaction relation � of
AuxLog with |=, the main one from Definition 1. Further note that AuxLog
is a member of the family of µ-calculi over the modal system K, which is
characterised by the laws of propositional logic and the modal laws � �(α →
α′) → (�α → �α′) and “if � α then � �α”. The reason is that, as mentioned,
R ⊆ A×A is structurally arbitrary. Hence, no more structural properties than
those of the modal system K, i.e., none, can generally be assumed to hold for
�. As a corollary, the model-checking problem, i.e., “Given a ∈ A and α ∈ L′,
is it the case that 〈(A, R), J·K〉, a � α?” is decidable in deterministic polynomial
time in the size of α. See [8] for details.

C.1 Trusted Third Parties

The concept of a Trusted Third Party (TTP) is a folklore concept for much of in-
formation security, e.g., for many protocols for authentication and key establish-
ment [7], as well as for secure multiparty computation [37]. Recall that “a secure
multiparty computation for function f can be viewed as an implementation of
a trusted third party T , which, upon receipt of the input values x1, . . . , xn from
parties P1, . . . , Pn, respectively, produces the output value y = f(x1, . . . , xn).
Party T is trusted for (i) providing the correct value for y and (ii) [n]ot reveal-
ing any further information to parties P1, . . . , Pn” [35]. In our terminology of
agent correctness, the conjunction of Condition (i) and (ii) informally stipulates
what it means for T to be correct. Notice that the above definition of secure
multiparty computation merely defines the object of trust (i.e., agent correct-
ness), but not trust itself (which, in our definition, is belief or even knowledge
of agent correctness). To the best of our knowledge, the concept of a TTP has
never been formally defined, i.e., mathematically analysed into its conceptual
constituents. Here, we are able to define the TTP-concept in terms of our con-
cept of trust domains (cf. Table 4), and instantiate TTPs in the Web of Trust
(cf. Section C.2) and Public-Key Infrastructures (PKIs) (cf. Section C.3). More
precisely, we define the concepts of a weakly and a strongly trustworthy TTP,
i.e., TTPs that may or even must deserve the trust of their trusters—and vice
versa. Note that the trustworthiness of TTPs (e.g., the certification authorities
in a PKI) is absolutely crucial, without which whole security architectures (e.g.,
a PKI) can break down. Observe that thanks to Theorem 1, the two sides (e.g.,
{c, a} and {c, b}) in a strongly (but not in a weakly) trustworthy TTP constitute
a (strong) trust domain as a whole (i.e., as {c, a} ∪ {c, b}).

142

C.2 The Web of Trust

In the (decentralised) Web of Trust, as defined by Philip Zimmermann [40] in
1992, any agent can independently establish its own domain of trusted corre-
spondents by publicly designating (e.g., on their homepage) so-called trusted
introducers, who by this very act become commonly known as such. In PGP, the
designation of a trusted introducer is implemented as the (publicly exportable)
signing of the designated trusted introducer’s public key with the designator’s
private key. Additional assurance can be provided by The Global Internet Trust
Register [3]. The role of an agent a’s trusted introducer b is to act as a guarantor
for the trustworthiness of a, and by that, to catalyse the building up of trust re-
lationships between a and those agents c who are only potential (not yet actual)
trustees of a but who are (already) actual trustees of b. Notice the importance
of distinguishing between potential and actual trust (cf. Definition 3 and 4).
Thus, the more guarantors (actual trustees) an agent (as an actual truster) has,
the more potential trustees the agent (as a potential truster) has. In the Web
of Trust, agents are (socially speaking) trustworthy, or (technically speaking)
correct if and only if all their designated trusted introducers are, and
at most they (the correct agents) can access their (own) private key.
(Agents with untrustworthy introducers or a corrupt private key are untrustwor-
thy.) Notice the possible mutuality in this social notion of agent correctness.

We model the designated-trusted-introducer relationships between agents in
system states s ∈ S with a family of relations (a kind of data base) DTIs ⊆ A×A
such that

b DTIs a :iff b is a designated trusted introducer of a in s.

The valuation function V on the propositions correct(a) can then be formally
defined with the aid of AuxLog as follows:

V(correct(a)) := { s | 〈(A,DTIs), ∅〉, a � νC(OK ∧�C) },

where ∅ designates the empty auxiliary interpretation (C is bound!). The greatest-
fixpoint assertion 〈(A,DTIs), ∅〉, a � νC(OK∧�C) says that a is in the greatest
fixpoint of the interpretation of the property C such that:

if a satisfies C (i.e., a is in the interpretation of C) then a satisfies
OK ∧ �C, which in turn says that at most a can access a’s private key
and for all b ∈ A, if b is a designated trusted introducer of a in the state
s then b satisfies C.

Observe that all (=1) free occurrences of C in OK ∧ �C of νC(OK ∧ �C) oc-
cur within an even (=0) number of occurrences of ¬. Hence, our definition is
formally well-defined. Further observe that the possible mutuality in our notion
of agent correctness corresponds to the co-inductiveness of the greatest fixpoint,
which allows direct (self-designation) and indirect (mutual designation) loops in
the designated-trusted-introducer relationships. The interpretation of the corre-
sponding (inductive) least-fixpoint formula would wrongly not allow such loops.

143

Of course, the language of AuxLog allows for other, more complex definitions
of agent correctness, e.g., ones disallowing self-designation12, and/or ones with
a more complex notion of being OK. Our present definition is just an incep-
tive example proposal. The co-inductive definition has the following iterative
paraphrase from above (iterated deconstruction).

Everybody is correct (the Web of Trust is born in the plenum, so to say);
except for the following agents (exclude those which are clearly not OK):
0. agents with a corrupt private key (Type 0 agents)
1. agents with a designated trusted introducer of Type 0 (Type 1 agents)
2. agents with a designated trusted introducer of Type 1 (Type 2 agents)
3. etc.

Clearly, weak or strong trust relations in the Web of Trust must be universal
within an agent’s domain of correspondents in the sense of Proposition 1: des-
ignated trusted introducers are trusted; and they would not act as such, if they
did not trust their designator and their designator’s other designated trusted
introducers, etc. Hence, our trust relations and trust domains from Table 2 as
well as our weakly and strongly trustworthy TTPs from Table 4 are fit for the
Web of Trust without further adaptation.

C.3 Public-Key Infrastructures

In Public-Key Infrastructures (PKIs), centralised certificate authorities (CAs)
act as guarantors for the trustworthiness of the public key of their clients by
issuing certificates that bind the public key of each client (the legitimate key
owner) to the client’s (unique) name. In PKIs, agents are (socially speaking)
trustworthy, or (technically speaking) correct if and only if all their certi-
fied agents are, and at most they (the correct agents) can access their
(own) private key. (Agents who certify incorrect agents or agents with a cor-
rupt private key are incorrect.) Notice the absence of mutuality in this notion of
agent correctness; it is intrinsically unilateral. However, the notion of PKI trust
to be built from this notion of agent correctness will be again bilateral (i.e.,
mutual, and thus symmetric): the certifying correct agent trusts the certified
correct agent, and vice versa.

We model the relationships from certifying agents to certified agents (which
may themselves be certifying agents to agents certified by them, etc.) in system
states s ∈ S with a family of relations (a kind of data base) CRTs ⊆ A×A such
that

b CRTs a :iff b is certified by a in s,

12 Yet whether or not you declare yourself as trustworthy may well be legally critical (cf.
for example such hand-written self-declarations in certain immigration procedures).

Anyway, the disallowance of self-designation could be implemented by introduc-
ing a binding operator ↓ à la hybrid logic [4] into the language of AuxLog, such
that 〈(A, R), J·K〉, a � ↓C(α) :iff 〈(A, R), J·K[C 7→{a}]〉, a � α, and stipulating that

V(correct(a)) := { s | 〈(A,DTIs), ∅〉, a � µC(OK ∧ ¬↓C′(♦C′) ∧�C) }.

144

where “b is certified by a in s” means “a has issued a valid certificate for b in s”,
i.e., a certificate that is non-revoked in s and signed by a with the private key of
a. The valuation function V on the propositions correct(a) can then be formally
defined with the aid of AuxLog as follows:

V(correct(a)) := { s | 〈(A,CRTs), ∅〉, a � µC(OK ∧�C) }.

The least-fixpoint assertion 〈(A,CRTs), ∅〉, a � µC(OK ∧ �C) says that a is in
the least fixpoint of the interpretation of the property C such that:

if a satisfies OK∧�C (i.e., a is in the interpretation of OK∧�C)—which
in turn says that at most a can access a’s private key and for all b ∈ A,
if b is certified by a in the state s then b satisfies C—then a satisfies C.

Observe that certification is unilateral (i.e., non-mutual, and thus not sym-
metric) in the sense that certification relationships must not be directly (self-
certification) nor indirectly (mutual certification) looping, which forces a least-
fixpoint formulation. The PKI-approach to trustworthiness is thus diametrically
opposed to the approach of the Web of Trust. This opposition is reflected first,
in the least/greatest fixpoint “duality” of the two paradigms; and second, in the
fact that PKIs are based on (ultimately national) authority (hierarchical CAs),
whereas the Web of Trust is based on (borderless) peership (peer-guarantors).
(At the international level, it makes sense to organise the totality of national CAs
as a Web of Trust.) Yet again of course, as with the Web of Trust, the language
of AuxLog allows for other, more complex definitions of agent correctness, e.g.,
ones with self-certification for the root-CA13 (the trust anchor), and/or ones
with a more complex notion of being OK (e.g., including the possibility of key
escrow). Again, our present definition is just an inceptive example proposal. The
inductive definition has the following iterative paraphrase from below (iterated
construction).

Nobody is correct (PKIs are born ex nihilo, so to say); except for the
following agents (include those which are clearly OK): agents without a
corrupt private key (Type 0 agents), whose certified agents are also of
Type 0 (Type 1 agents), whose certified agents are again also of Type 0
(Type 2 agents), etc. (In other words, being of Type 0 is an invariant in
the transitive closure of certification relationships.)

Notice the structural difference between this paraphrase for agent correctness
in PKIs and the previous one for agent correctness in the Web of Trust. The
“duality” is not pure.

As suggested, CAs are commonly organised in a hierarchy, which induces
structured trust domains in the form of finite trees. Recall that a finite tree is
a partially-ordered set (here say 〈C,≤〉) with a bottom (top) element such that

13 Self-certification for the root-CA could be implemented by introducing an atomic
proposition root true at and only at the root-CA agent, and stipulating that
V(correct(a)) := { s | 〈(A,CRTs), ∅〉, a � (root→ ♦root) ∧ µC(OK ∧�C) }.

145

Table 5. Public-Key Infrastructure trust domains

wTDPKI(C) := CBC(
∧

a, b ∈ C and (a ≤ b or b ≤ a)
a wTrusts b) C is a weak PKI trust domain

sTDPKI(C) := CKC(
∧

a, b ∈ C and (a ≤ b or b ≤ a)
a sTrusts b) C is a strong PKI trust domain.

for each element in the set, the down-set (up-set) of the element is a finite chain
[10]. In PKI trust domains, trust relations are symmetric (up- and downwards
the tree branches) and transitive (along the tree branches) but not universal
(after all, a tree is a tree and not felt fabric), and the root CA corresponds to
the tree root, the intermediate CA’s correspond to the intermediate tree nodes,
and the clients to the tree leafs. Hence we can fit our weak and strong trust
domains to PKI trust domains 〈C,≤〉 by simply stipulating that the conjunction
in the respective definition respect the finite-tree structure ≤ of C, and reflect
the symmetry and transitivity of the trust relations. And that is all: see Table 5.
We can now instantiate our weakly and strongly trustworthy TTPs from Table 4
for PKIs as wtTTPPKI(c, a, b) := CB{a,b,c}(wTDPKI({c, a})∧wTDPKI({c, b})) and
stTTPPKI(c, a, b) := CK{a,b,c}(sTDPKI({c, a})∧ sTDPKI({c, b})), respectively, with
≤ := {(c, a), (c, b)} as (tree) domain structure. Fits for trust domains with other
structures (e.g., buses, chains, rings, stars, etc.) can be made by similarly simple
stipulations (e.g., for computing clouds, which have not a fixed but a dynamic,
an evolving structure).

In sum, a weak or strong PKI trust domain C is built from a certification
hierarchy ≤ of certifying (CAs) and certifiable agents a ∈ C such that for all
states s ∈ S there is a (possibly empty) certification record { b ∈ C | b CRTs a }.
Thereby, the certification hierarchy acts as a constraining skeleton (there is no
such skeleton in the Web of Trust; it is unconstrained) for the potential and the
actual trust relationships in C, and, by that, the respective memberships in the
trust domain C itself. And the certification records act as evidential support for
the actuality of the trust relationships and the memberships in the trust domain.

C.4 Identity-Based Cryptography

Identity-Based Cryptography is a variation of Public-Key Cryptography in which
the intending sender of a message derives the (public) encryption key from the
public identity (e.g., a telephone number, an email address, etc., or a combination
thereof) of the intended recipient [20]. In our setting, we abstractly model an
agent a’s public identity with the symbol ‘a’. For the sake of the security of
ID-based encryption, an ID-based private key must not be derivable from its
corresponding public counterpart without an additional trap-door information.
This trap-door information is owned by a central CA (cCA ∈ A), which therefore
can derive the private keys of all its certified agents. (Thus ID-based domains
have a star structure: ≤ is an n-ary tree of depth 1 with as root cCA and as
leaves the n agents certified by cCA.) Hence for ID-Based Cryptography, the

146

definition of an agent being OK (cf. Section C) must be weakened, e.g.,

JOKK := { a ∈ A | at most a and cCA can access a’s private key }.

Note that as a consequence, the notion of trust (and thus the value of the trust-
worthiness of cCA) is weakened! Of course, a restrengthening is possible, e.g., by
stipulating that cCA has not used the private keys of its certified agents (except
possibly for key escrow). In sum, the flexibility of ID-Based Cryptography for
its users (the certified agents) is paid with a devaluation of the trustworthiness
of its provider (cCA).

147

A Multi-Modal Framework for Achieving
Accountability in Multi-Agent Systems

Simon Kramer? and Andrey Rybalchenko

1 University of Tsukuba, Japan
simon.kramer@a3.epfl.ch

2 Technical University Munich, Germany
rybal@in.tum.de

Abstract. We present a multi-modal, model-theoretic framework for
achieving accountability in multi-agent systems through formal proof.
Our framework provides modalities for knowledge, provability, and time.
With these modalities, we formalise the two main aspects of accountabil-
ity, which are: soundness (accountability proper), i.e., for correct agents,
the provability of their correctness by themselves; and completeness (au-
ditability), i.e., for faulty agents, the eventual provability of their faulti-
ness by others. In our framework, the accountability proof of a particular
system is reduced to the proof of a few key lemmata, which the system
designer needs to establish for a considered system.

Keywords
accountability (including auditability, liability, and non-repudiation);
modal logics of knowledge, provability, and time; dependable distributed
or multi-agent systems; Popper’s critical rationalism; Russel’s paradox.

1 Introduction

The subject matter of this paper is accountability in multi-agent or distributed
systems [23], i.e., the possibility of enforcing responsibility for illegitimate or even
illegal (in)action (in)effectuated by faulty agents in those systems. In plainer
words, accountability allows to place blame [26] with all faulty agents (com-
pleteness aspect), and only with those agents (soundness aspect). Note that when
faultiness implies illegality, accountability implies liability. In the present section,
we introduce the motivation for our subject matter, the goal to be achieved in
the matter, and the methodology that we employ to meet our goal.

Motivation In [28], accountability is promoted as a first-class design princi-
ple for dependable distributed systems. According to these authors’ manifesto,
? This (corresponding) author’s contribution was initiated in the Comète group at
Ecole Polytechnique and INRIA (France), and completed under Grant P 08742 from
the Japan Society for the Promotion of Science in the Laboratory of Cryptography
and Information Security (U Tsukuba).

148

“conventional techniques for dependable systems design are insufficient to de-
fend against an adversary that manipulates the system covertly in order to lie,
cheat, or steal”. According to [28], conventional techniques are insufficient due to
the increasing integration of system functionality across different trust domains
(cf. [20, 19] for a formal definition of trust domains). Within and across such
domains, abuse of trust must be not only detectable (i.e., knowable), but also
provable, in order to protect agents who behave correctly (the correct agents)
from agents who do not (the faulty agents). Provability protects correct agents
from faulty agents because provability is a necessary and sufficient condition for
the non-repudiation of faulty behaviour: if you have a proof that I (in)effectuated
an illegitimate (in)action then I cannot repudiate having (in)effectuated that
(in)action, and vice versa. Note that the provability of a state of affairs is strictly
stronger than the knowledge that that state is the case. For example, an agent
may know that a certain state of affairs is the case from observation, yet not be
able to prove her knowledge to the non-observers (e.g., a judge) for lack of suf-
ficient evidence (i.e., proof). Conversely, correct agents should be able to prove
their correct behaviour to the other agents (e.g., in order to protect themselves
from corrupt auditors). Note that the creation of an accountable Internet has
been proposed as a national goal for cyberspace [22].

Goal The authors of [28] argue for the need of “new ways of thinking about
dependability and new methodologies to build and evaluate dependable systems”.
Thereby, “[t]he key challenge is to develop general and practical methodologies
and techniques that can approach the ideal of full accountability for networked
systems”. Our ambition is to take up and meet this challenge. In the present
paper, our goal is to distil the declarative essence of accountability, and to deliver
a formal framework for achieving accountability in distributed or multi-agent
systems through the ideal of formal proof.

Contribution This paper applies the formal methodology of multi-agent sys-
tems [25] to a real-world distributed system supposed to guarantee accountabil-
ity. Being application-driven, we focus on the application of the methodology
rather than the meta-logical study of our (mostly standard) framework within
which we illustrate our methodology. Further, when applying the methodology,
we will focus on semantic proof, in order to make explicit the intuitive reasoning
content rather than the automatisable, computational content of accountability.
The formal treatment of accountability is a recent research topic; it is therefore
prudent to clarify our intuitions of and reasoning about accountability before we
try to automatise our reasoning about it with computers.

More precisely, our contribution is five-fold (cf. Section 3.2 for related work):

1. a general, declarative definition of accountability that achieves the ideal of a
formal transcription of the original, natural-language formulation from the
distributed systems community (cf. Sections 2.2–2.2)

149

2. the isolation and formalisation of three logically sufficient and modelling-
wise necessary conditions under which distributed systems (as modelled in
our framework) are indeed accountable (cf. Section 2.2)

3. a flexible formal framework for achieving accountability in distributed sys-
tems (cf. Section 2.1) that provides:
(a) powerful descriptive idioms in the form of three primitives for logs (in-

troduced here) and multiple modal operators (standard or introduced in
[18])

(b) an intuitive semantic setting for developing succinct formal proofs
4. a generic pre-establishment of accountability (cf. Section 2.2) that allows the

proof for any candidate system to be:
(a) factored into the contingent (i.e., application-specific) and the logical

(i.e., conceptual) content
(b) reduced to the proof of a few key lemmata

5. a principled case study as an illustrative example of how to apply our frame-
work to a real-world system (cf. Section B).

Methodology In order to meet our goal, we formalise accountability—and the
assumptions based on which it can be established—in a multi-modal language of
a model-theoretic framework. The key concept for our formalisations is a modal
notion of agent-based provability. This methodology will yield the general and
declarative definition of accountability and the flexibility of the corresponding
framework that we seek.

2 Accountability

In this section, we present our multi-modal framework for achieving accountabil-
ity in distributed systems through formal proof. The framework provides modali-
ties for knowledge, provability, and time. Knowledge will be used in the definition
of provability; and provability, like also time, will be used in the formalisation
of the two main aspects of accountability. According to the distributed-systems
community [28], these aspects are: accountability soundness (accountability
proper), i.e., for correct agents, the provability of their correctness by them-
selves. Accountability completeness (auditability), i.e., for faulty agents,
the eventual provability of their faultiness by others. We recall that agent cor-
rectness (actually dually, faultiness) is a fundamental, primitive notion for dis-
tributed systems, whose guarantees are conditioned on this notion [23]. (A typical
condition is that there be a minimal number of correct agents.)

2.1 Framework

We define our multi-modal framework model-theoretically for the sake of greater
flexibility of modelling and proving in the framework as well as extending it.
(Recall that in logic, ‘model-theoretic’ means ‘set-theoretic’.) More precisely:

150

1. when modelling in our framework, we may exploit the definitional power of
our set-theoretic semantic setting, e.g., for the application-specific definition
of agent correctness (cf. Appendix B.3 for a functional example)

2. for proving in our framework and when extending it, we need not worry
about:
(a) difficult or even impossible completeness proofs of axiomatisations be-

cause our framework is set up in the already axiomatised set-theoretic
setting

(b) constraining decidability and complexity issues, which, when respected,
could limit the expressiveness and thus applicability of our framework

3. when proving (semantically) in our framework, we may fully exploit the:
(a) descriptive power of our modal operators, which are logical formalisa-

tions of frequently needed, intuitive natural-language idioms
(b) deductive power of the deduction theorem3, which we could not when

proving syntactically because axiomatisations of knowledge and time
(which are concepts to which we need appeal) do not enjoy the (global)
deduction theorem [10].

With our framework, we get the advantages of the deductive world of (semantic)
proofs and the descriptive world of modal operators, without the disadvantages
of either world, namely the need for completeness proofs and the absence of a
(global) deduction theorem for most modal proof systems.

Communication model For the sake of the faithful modelling of distributed
systems, we choose message passing (as opposed to shared-variable communi-
cation) as the underlying communication model of our framework. For that, we
define the following generic message language.

Definition 1 (Message language and derivation). Let A designate an ar-
bitrary finite set of unique agent names4 a, b, c etc. Then,

M3M ::= B | a | dMe | [M]a | (M,M) | “S”

defines the set M of message terms M with application-specific base data B,
agent names5 a, message hashes dMe, signed messages [M]a, message pairs
(M,M), and quoted pieces of syntax S such as message-carrying events (see
below for their definition and Section B for an example of their quoted use in log
messages).

Further,
L ⊆M

3 The property of a proof system that implications can be proven from the conclusion
of their consequent under the hypothesis of their antecedent.

4 i.e., agent names injectively map to agents (here, names are identifiers)
5 Agents are referred to by their (unique) name, which are transmittable data, i.e.,
messages. Agents can be network nodes, parties, processes, processors, real or virtual
machines, users, etc.

151

designates a set of application-specific logs L, to be determined by the considered
application (cf. Section B for an example).

Furthermore, `a ⊆ 2M ×M designates a relation of message derivation à
la Dolev-Yao [8] for agent a ∈ A such that for all D ⊆M:

– D ∪ {M} `a M (the trivial derivation)
– for all b ∈ A, D `a b (agent names are guessable)
– if D `a M then D `a dMe (hashing)
– if D `a M then D `a [M]a (personal signature synthesis)
– for all b ∈ A, if D `a [M]b then D `a M (universal signature “analysis”

and message recovery)
– (D `a M and D `a M ′) iff D `a (M,M ′) ([un]pairing).

Notice thatM is generic in the application-specific base data B and the quoted
pieces of syntax “S”, which can be freely instantiated in the considered appli-
cation. Further, observe that we assume the existence of an unforgeable mech-
anism for signing messages, which we model with the above signature synthe-
sis and “analysis” rules. In trusted distributed systems, such a mechanism is
trivially given by the inclusion of the sender’s name in the sent message. In
distrusted distributed systems, such a mechanism can be implemented with
classical certificate-based or directly with identity-based [16] public-key cryp-
tography. We also assume the existence of a mechanism for hashing messages.
According to [28], “[s]ecure hashes and digital signatures are fundamental build-
ing blocks for accountable systems”.

Setup We subsequently define our (mostly standard) framework, which consists
of a logical language with a model-theoretic semantics. The logical language
provides the following, particularly notable (epistemic) constructions:

– A relational symbol k “knows” for individual knowledge, which is an instance
of knowledge in the sense of the transitive use of the verb ‘to know’, here ‘to
know a message à la Dolev-Yao’ [8]. Individual knowledge will be modelled
with the relation `a of message derivation (cf. Definition 1).

– A standard constructor Ka “a knows that” for propositional knowledge, which
is an instance of knowledge in the sense of the use of the verb ‘to know’ with
a clause, (i.e., to know that a statement is true). Propositional knowledge
will be modelled with an indistinguishability relation between system states.
For a monograph on propositional knowledge, see [9].

– A constructor KM
a “if a knew M then” for a non-trivial combination of the

two previous kinds of knowledge that expresses propositional knowledge con-
ditioned on the individual knowledge of M . This conditioning will be mod-
elled as a hypothetical message reception event (e.g., from an oracle) that
is inserted at the current moment in time (and thus added to the agent’s
individual knowledge). For a detailed exposition, see [18].

– A standard constructor CK “it is common knowledge that” for a collective
kind of propositional knowledge. Informally, a statement φ is common knowl-
edge when all agents know that φ is true (call this new statement φ′), all

152

agents know that φ′ is true (call this new statement φ′′), all agents know that
φ′′ is true (call this new statement φ′′′), etc. Note that depending on the
properties of the employed communication lines, common knowledge may
have to be pre-established off those lines along other lines. For a detailed
treatment of common knowledge in distributed systems, see [14].

The formal definitions for all this knowledge follow now.

Definition 2 (Framework). Let Φ designate our logical language of closed
formulae φ as defined in Table 1. There, ϕ denotes corresponding unary open
formulae with a single free term variable m. Notice that the formulae above the
dashed line are atomic (for elementary facts), and those below compound (formed
with operators). Also, note that all operators except KM

a , which was introduced
in essentially the same form in [18], are standard [25]. Then, given the set

E 3 ε ::= S(a,M, b) “a sends M to b”
| R(a,M) “a receives M ”

of system events ε (also noted as ε(a)) for message sending and receiving, and
the set E∗ (Eω) of (in)finite traces over E, we define the satisfaction relation
|= ⊆ (Eω × N)× Φ of our framework in Table 2. There,

– “:iff” abbreviates “by definition, if and only if”
– E@i designates the system event (say ε) of the infinite trace E ∈ Eω inspected

at the position i ∈ N
– msg(ε) := {M, “ε”} where ε ∈ {S(a,M, b), R(a,M)} designates a function for

message extraction, which we tacitly lift from events ε ∈ E to finite traces
thereof (Notice the use of quoted syntax, cf. Definition 1!)

– E�i (resp. E�i) designates the finite prefix trace up to (resp. infinite suffix
trace from) and including the event at the position i ∈ N of the infinite trace
E ∈ Eω

– ↓ : (E∗ ×A) → E∗ designates a projection function projecting a finite trace
onto an agent’s (local) view such that for all E ∈ E∗ and a ∈ A,

ε↓a := ε (the empty trace)

(ε ·E)↓a :=

{
ε · (E↓a) if ε ∈ {S(a,M, b), R(a,M)}
E↓a otherwise

– logs : A → 2L designates an application-specific log selection function se-
lecting the set of well-formed logs for a given agent, to be defined by the
considered application (cf. Section B for an example)

– J·K : L → E∗ designates a log-to-trace transcription (or de-quotation) func-
tion (again to be defined by the considered application)

– ↑ : (E∗ ×A)→ Eω designates a completion function completing finite traces
with an infinite suffix of arbitrary events beyond the agent’s view (for well-
definedness only, i.e., conceptually inessential)

153

Table 1. Logical language

Φ 3 φ ::= correct(a) “a is correct”
| sends(a,M, b) “a sends M to b”
| a receives M “a receives M ”
| a k M “a knows M ”
| M wfLog a “M is a well-formed log for a”
| M soundLog a “M is a sound log for a”
| M completeLog a “M is a complete log for a”
| ¬φ “not φ”
| φ ∧ φ “φ and φ”
| ∀m(ϕ) “for all m, ϕ”
| �φ “henceforth φ”

| �φ “so far φ”
| Ka(φ) “a knows that φ”

| KM
a (φ) “if a knew M then a would know that φ”

| CK(φ) “it is commonly known that φ”

Table 2. Satisfaction relation

(E, i) |= sends(a,M, b) :iff E@i = S(a,M, b)

(E, i) |= a receives M :iff E@i = R(a,M)

(E, i) |= a k M :iff msg((E�i)↓a) `a M
(E, i) |=M wfLog a :iff M ∈ logs(a)

(E, i) |=M soundLog a :iff (E, i) |=M wfLog a and ((JMK↑a), i) .a (E, i)

(E, i) |=M completeLog a :iff (E, i) |=M wfLog a and (E, i) .a ((JMK↑a), i)
(E, i) |= ¬φ :iff not (E, i) |= φ

(E, i) |= φ ∧ φ′ :iff (E, i) |= φ and (E, i) |= φ′

(E, i) |= ∀m(ϕ) :iff for all M ∈M, (E, i) |= ϕ[M/m]

(E, i) |= �φ :iff for all j ≥ i, (E, j) |= φ

(E, i) |= �φ :iff for all j ≤ i, (E, j) |= φ

(E, i) |= Ka(φ) :iff for all (E′, i′) ∈ Eω × N,
if (E, i) ≈a (E′, i′) then (E′, i′) |= φ

(E, i) |= KM
a (φ) :iff for all M ′ ∈M,

if {M ′} `a M
then (E�i · R(a,M ′) ·E�i+ 1, i+ 1) |= Ka(φ)

(E, i) |= CK(φ) :iff for all (E′, i′) ∈ Eω × N,
if (E, i) ≈∗∪ (E′, i′) then (E′, i′) |= φ

154

– .a ⊆ (Eω × N)2 designates a pre-order expressing non-empty pre-fixing up
to the currently inspected positions and modulo the agent’s a ∈ A local view,
defined such that for all (E, i), (E′, i′) ∈ Eω × N,

(E, i) .a (E′, i′) :iff there is E′′ ∈ E∗ such that
((E�i)↓a) ·E′′ = (E′�i′)↓a 6= E′′

– ϕ[M/m] designates the substitution of the (closed) term M for all free oc-
currences of the term variable m in the formula ϕ

– ≤ designates the standard total order on N, and ≥ the converse of ≤
– ≈a ⊆ (Eω×N)2 designates a relation of epistemic accessibility expressing in-

distinguishability of traces up to the currently inspected positions and modulo
the agent’s a ∈ A local view, defined such that for all (E, i), (E′, i′) ∈ Eω×N,

(E, i) ≈a (E′, i′) :iff (E, i) .a (E′, i′) and (E′, i′) .a (E, i)

– ≈∗∪:= (
⋃

a∈A ≈a)
∗, where ∗ designates the Kleene (i.e., the reflexive transi-

tive) closure operation

Note that the semantics of the predicate correct is application-specific, and thus
left to be defined for the considered system (cf. Section B for an example).
Further notice that the relation .a uniformly serves as the basis for the se-
mantics of the predicates soundLog and completeLog as well as for the defini-
tion of the epistemic accessibility relation. Finally notice that formulae φ ∈ Φ
have a Herbrand-style semantics, i.e., logical constants (agent names) and func-
tional symbols (hashing, signing, and pairing) are self-interpreted rather than
interpreted in terms of (other, semantic) constants and functions. This simplify-
ing design choice spares our framework from term-variable assignments [7]. The
choice is admissible because our individuals (messages) are finite. Hence, substi-
tuting (syntactic) messages for message variables into (finite) formulae preserves
the well-formedness of formulae (cf. the semantics of universal quantification).

Now, we can macro-define the following standard concepts from first-order
and temporal logic:> := a k a,⊥ := ¬>, φ∨φ′ := ¬(¬φ∧¬φ′), φ→ φ′ := ¬φ∨φ′,
∃m(ϕ) := ¬∀m(¬ϕ), ♦φ := ¬�¬φ (“eventually φ”), ♦φ := ¬�¬φ (“once φ”).
Moreover, and more interestingly, we can macro-define the concepts in Table 3,
which are important for our formal definition of accountability and the assump-
tions based on which accountability can be established. In Table 3, observe our
definition of agent-based provability, which captures the idea of proofs as suffi-
cient evidence. The definition stipulates that it be common knowledge among
the agents that to the designated verifier a,

1. the actual (cf. material implication) and
2. the hypothetical (cf. conditional implication)

knowledge of M be individually necessary and jointly (vacuity!) sufficient for
the knowledge of φ. Note that a material conditional alone would not do here
because any message unknown to a would vacuously qualify as a proof. See [18]
for a detailed exposition of our provability modality.

155

Table 3. Important macro-definitions

a sTrusts b := Ka(correct(b)) “a strongly trusts b”
faulty(a) := ¬correct(a)

M :a φ := CK
(
(a k M → Ka(φ)) ∧ KM

a (φ)
)

“M is a proof of φ for a”
M decidesa φ := (M :a φ) ∨ (M :a ¬φ) “M decides φ for a”

M : φ := ∀a(M :a φ) “M is a proof of φ”
M decides φ := ∀a(M decidesa φ)

P(a,b)(φ) := ∃m((m :b φ) ∧ a k m) “a can prove to b that φ”
Pa(φ) := ∃m((m : φ) ∧ a k m) “a can prove that φ”

a canExpose b := Pa(faulty(b))

M adequateLog a := M soundLog a ∧M completeLog a

M decisiveLog a := M wfLog a ∧M decides correct(a)

a logs M := M wfLog a ∧ ∃b(sends(a,M, b))

M filedLog a := ♦(a logs M)

Finally, following [4], we define the concepts of validity, logical consequence,
and logical equivalence.

Definition 3. A formula φ ∈ Φ is valid, written |= φ, :iff for all (E, i) ∈ Eω×N,
(E, i) |= φ. A formula φ′ ∈ Φ is a logical consequence of a formula φ ∈ Φ, written
φ ⇒ φ′, :iff for all (E, i) ∈ Eω × N, if (E, i) |= φ then (E, i) |= φ′. A formula
φ′ ∈ Φ is logically equivalent to a formula φ ∈ Φ, written φ ⇔ φ′, :iff φ ⇒ φ′

and φ′ ⇒ φ.

Properties

Fact 1 |= φ→ φ′ iff φ⇒ φ′

Proof. By expansion of definitions.

The following proposition provides further useful intuitions about our frame-
work. Technically, the proposition proves that our framework provides standard
epistemic operators, and an agent-based provability operator enjoying standard
properties, and that provability implies knowledge.

Proposition 1.

1. The auxiliary relation .a is pre- but not partially ordering.
2. The epistemic accessibility relation ≈a is an equivalence relation. Or, equiv-

alently, the epistemic modality Ka is S5, i.e., captures the standard notion
of knowledge (cf. [9] and [25, Section 7.1]):
K |= Ka(φ → φ′) → (Ka(φ) → Ka(φ

′)) (Kripke’s law / closure under
implication)

T |= Ka(φ)→ φ (truth law / reflexivity)

156

4 |= Ka(φ)→ Ka(Ka(φ)) (positive introspection / transitivity)
5 |= ¬Ka(φ)→ Ka(¬Ka(φ)) (negative introspection / Euclideanness)
N if |= φ then |= Ka(φ) (epistemic necessitation / all agents know all

validities)
3. Being defined in terms of an equivalence relation, CK is S5 too. In partic-

ular, if |= φ then |= CK(φ), i.e., validities are common knowledge. Further,
|= CK(φ) → ∀a(Ka(φ)) and |= CK(φ → ∀a(Ka(φ))) → (φ → CK(φ)) [25,
Section 7.1].

4. Pa is S4, i.e., captures a standard (though even interactive) notion of Gödel-
style provability [2]:
K |= Pa(φ→ φ′)→ (Pa(φ)→ Pa(φ

′))

T |= Pa(φ)→ φ

4 |= Pa(φ)→ Pa(Pa(φ))

N if |= φ then |= Pa(φ)

5. |= Pa(φ)→ Ka(φ).

Proof. For the failure of the anti-symmetry of the relation .a consider the
following counter-example with a, b ∈ A such that a 6= b, M ∈ M, and
E ∈ Eω: (S(a,M, b) ·E, 1) ≈a (S(a,M, b) · R(b,M) ·E, 2), but (S(a,M, b) ·E, 1) 6=
(S(a,M, b) · R(b,M) ·E, 2). Thus the culprits for the failure are trace positions
and the (necessary) projection of the trace onto agent (local) views.

The equivalence property of ≈a follows from the pre-order property of .a.
For the proof of the properties of the provability modality and the law con-

necting provability to knowledge, see [18].

Lemma 1. Individual knowledge is never forgotten. Formally,

|= ∀a∀m�(a k m→ �(a k m)).

Proof. Straightforward from definitions.

This lemma obviously depends on persistent storage for the essential parts of
an agent’s individual knowledge (i.e., those parts that cannot be reconstructed
from other parts).

The following nice-to-know proposition gives guarded Barcan laws (cf. first-
order epistemic logic [7]), i.e., guarded quantifiers (w.r.t. to individual knowledge
of say a) can be freely extruded from and intruded into the scope of epistemic
modalities (capturing propositional knowledge w.r.t. a).

Proposition 2 (Guarded Barcan laws).

1. |= Ka(∃m(a k m ∧ φ))↔ ∃m(a k m ∧ Ka(φ))

2. |= Ka(∀m(a k m→ φ))↔ ∀m(a k m→ Ka(φ))

Proof. Straightforward from definitions.

157

2.2 Pre-establishment

An important particularity of our framework is that it is parametric in the proof
of a few key lemmata, whose contents we state as assumptions, and to which
we reduce the soundness and the completeness proof of potential applications
a priori, i.e., before their design. That is, our framework pre-establishes the
soundness and the completeness aspect of accountability by factoring the proof
of each aspect into the contingent (i.e., application-specific) and the logical (i.e.,
conceptual) content. As a result, the accountability proof of a particular system
is reduced to the proof of the key lemmata (i.e., to the discharge of the key
assumptions), which the system designer needs to establish for a considered
system a posteriori, i.e., after its design.

More precisely, the factoring confines the contingent content to a finite con-
junction φ′ ∈ Φ of system assumptions that logically implies the considered
system goal φ ∈ Φ (i.e., soundness or completeness), which contains the logical
content, i.e., φ′ ⇒ φ. Then, given a definition of correct for the considered system
and a finite conjunction φ′′ of system axioms6 that logically implies the system
assumptions φ′, i.e., φ′′ ⇒ φ′, the system axioms logically imply the system goal,
i.e., φ′′ ⇒ φ. Note that a definition of correct may entail a system assumption
or axiom to become a system validity, and thus common knowledge, as already
indicated in Proposition 1.3. This is a useful fact for formal proofs, which we
will develop in Fitch-style natural deduction. (Recall that Fitch-style proofs are
read outside-in.)

Key assumptions We make three succinct key assumptions that are sufficient
for achieving the soundness and the completeness aspect of accountability in
distributed systems. Our assumptions are also necessary for faithful modelling,
i.e., not making one of these assumptions would imply not modelling faithfully
these systems. In particular, faithful modelling requires the use of logs (i.e.,
accounting entries) of some form (cf. Section B for an example).

Two of our assumptions cannot be discharged by proof but only by psy-
chology and physics because their discharge depends on the system user and/or
the communication medium. The other assumption can be discharged by proof
because its discharge only depends on the mathematics that models the cryp-
tographic mechanisms (e.g., hashing and signing) required for the system im-
plementations. However, observe that our assumptions are fully abstract w.r.t.
these mechanisms in the sense that the assumptions do not mention functional
symbols, which represent these mechanisms at the term-language level.

Assumption 1 Decisive logs are necessarily known (though not necessarily
filed, e.g., by corrupt agents)7. Formally,

A1 := ∀a�∃m(a k m ∧m decisiveLog a).

6 Here, a system axiom is a sentence stipulating a characteristic property of the con-
sidered system, and not necessarily an axiom in a proof system.

7 Recall from the last three lines of Table 3 that, as opposed to being a filed log, being
a mere log is a mere well-formedness criterion.

158

This assumption can be discharged by proof, on the condition that correct (being
part of decisiveLog, cf. Table 3) be defined for the considered system.

Assumption 2 Faultiness is persistently provable by filed logs. Formally,

A2 := ∀a�(faulty(a)→
∃m(m filedLog a ∧�(m : faulty(a)))).

This assumption cannot be discharged by proof due to its dependence on system
users (e.g., the willingness of a to file a log m). Observe that this assumption
implies the assumption (made also by the PeerReview and other systems [13,
Section 4.4]) that log files cannot be tampered with.

Assumption 3 Logs are eventually known. Formally,

A3 := ∀a∀m�(a logs m→ ♦∀b(b k m)).

This assumption (made also by the PeerReview and other systems [13, Sec-
tion 4.3]) cannot be discharged by proof either, due to its dependence on, again,
system users (e.g., the willingness of a to commit logs m) and also, the commu-
nication medium (e.g., the reliability of the communication channels).

Soundness theorem As mentioned before, soundness in accountability means
that correct agents can prove their correctness to the other agents.

We can transcribe this natural-language formulation into our formal language
with the following macro-definition:

Soundness := ∀a�(correct(a)→ Pa(correct(a))).

Observe that soundness builds trust in the sense of Table 3, Line 1, i.e., the
proof of an agent a’s correctness to another agent, say b, induces the knowledge
with b that a is correct (cf. [20] for a detailed exposition of this sense of trust,
with example applications in cryptographic-key management). Also notice that
in Soundness, the converse implication is for free due to the truth law of Pa for
arbitrary a ∈ A (cf. Proposition 1.4.T).

Theorem 1 (Accountability soundness).

1. Assumption A1 is a sufficient condition for Soundness. Formally,

A1⇒ Soundness.

2. Whenever accountability is log-based (which is almost always the case in
practice), Assumption A1 also is a necessary condition for Soundness.

Proof. For (1), see Table 4. For (2), consider that if there is an agent such that
eventually all her known logs are non-decisive (this is the negation of A1) then
she has no (log-based) means of proving her correctness — even when she does
happen to be correct.

159

Completeness theorem As mentioned before, completeness in accountability
means that all agents can eventually always prove the faultiness of faulty agents.

We can transcribe this natural-language formulation into our formal language
with the following macro-definition:

Completeness := ∀a�(faulty(a)→
∀b♦�(b canExpose a)).

Theorem 2 (Accountability completeness). Assumptions A2 and A3
jointly are a sufficient condition for Completeness. Formally,

A2 ∧ A3⇒ Completeness.

Proof. See Table 5.

Accountability theorem As mentioned before, accountability is the conjunc-
tion of accountability soundness and accountability completeness.

We macro-define,

Accountability := Soundness ∧ Completeness .

Theorem 3 (Accountability).

1. Assumptions A1, A2, and A3 jointly are a sufficient condition for
Completeness. Formally,

A1 ∧ A2 ∧ A3⇒ Accountability

2. Whenever accountability is log-based, Assumption A1 also is a necessary
condition for Accountability.

Proof. By Theorem 1 and Theorem 2.

3 Conclusion

3.1 Assessment

Our goal has been to take up and meet [28]’s challenge of developing a general
and practical methodology and technique that can approach the ideal of full
accountability for networked systems.

We have delivered this methodology and technique within a multi-modal,
model-theoretic framework that is parametric in an application-specific

1. set L of well-formed logs (cf. Definition 1)
2. predicate correct for agent correctness (cf. Table 1).

160

The methodology consists in proving that the characteristic properties of a
considered system (i.e., the system axioms) logically imply three logically suffi-
cient and modelling-wise necessary conditions for accountability.

The technique then consists in:

1. instantiating L and correct for the considered system
2. formalising the system axioms with the powerful descriptive abstractions

built-in in our framework, i.e., the modalities, most notably Gödel-style prov-
ability

3. proving the implication by exploiting the inferential content of these modal-
ities.

Finally, we have illustrated the applicability of our framework on the case
study of the Distributed Book-Keeping (DBK) design pattern, which we intro-
duced as an analogue for distributed systems of Pacioli’s famous double-entry
book-keeping principle (cf. Section B).

We have defined DBK in terms of a distributed accounting daemon, which:

1. pinpoints an instance of Russel’s paradox for distributed systems
2. provides falsifiability of agent correctness in the sense of Popper
3. effects a timeline entanglement in the sense of [24].

On top of the accounting daemon, a distributed auditing daemon can provide
also verifiability of agent correctness by encouraging agents to produce proof of
their behavioural status (correct or faulty). Such proofs could be encouraged by
creating the appropriate deterrents and incentives for the agents in the consid-
ered system.

3.2 Related work

The following three formal approaches to accountability with a general aim exist.
To the best of our knowledge, [17] is the first to have published the idea

of formalising accountability with a notion of provability. However, the author
seems to have been unaware of standard modal provability, as corresponding
work is not mentioned in his paper. Rather, the author construes a supposed
notion of provability from two postulates: if an agent can prove two statements
then the agent can prove the conjunction of them, and if an agent can prove
a statement and that statement implies another statement then the agent can
prove the implied statement. Hence, the author’s notion of provability need not
even respect the truth law, i.e., that the provability of a statement imply the
truth of that statement.

To the best of our knowledge, [3] are the first to have published the idea
of proof as sufficient evidence. However, the authors do not seem to have been
aware of standard modal provability either, nor do they have a general account
of provability in the sense that they “can only formalize [protocol, not agent]
correctness with respect to a specific protocol”, which is a proof (in our sense)
that their logical formalisation of provability is not satisfactory yet.

161

The same comment applies for the same reason to [21], where accountability-
related properties for electronic contract-signing are studied in terms of Alter-
nating Temporal Logic (ATL).

Then, in [15], a process-algebraic programming model for distributed systems
for accountability and audit is presented in the particular context of authorisa-
tion. In that approach, finitary systems are compiled to turn-based games, and
ATL is used to specify system properties. The authors actually call their prop-
erty formulations “logical encodings”. In contrast, we define the properties in
our logic directly as mere transcriptions of their natural-language formulations.
Hence again, a similar comment as for the previous approach can be made.

Finally, in [11], a type-based definition of log-based auditability is given.
Thereby, the authors informally refer to concepts like provability (w.r.t. identity,
authenticity), agreement (w.r.t. public-key infrastructures, properties of judges),
knowledge (w.r.t. properties of judges), and trust (w.r.t. agents, functions, func-
tion libraries). All these concepts can be captured formally in the logical language
of our framework: provability with the provability modality, agreement with the
common-knowledge modality, (property) knowledge with the knowledge modal-
ity, and trust as the knowledge of (the property of) agent correctness.

Future work In future work, we would like to employ our framework in a
provability-based study of the Accountable Internet Protocol [1]. Given that
our notion of provability is defined in terms of knowledge, it could be possible
to reduce such a provability-based study to the knowledge-based study of the
Internet Protocol without accountability [27].

References

1. D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon, and
S. Shenker. Accountable internet protocol (AIP). In Proceedings of ACM SIG-
COMM, 2008.

2. S. Artemov. Handbook of Modal Logic, chapter Modal Logic in Mathematics. Vol-
ume 3 of Blackburn et al. [5], 2007.

3. G. Bella and L. C. Paulson. Accountability protocols: formalized and verified.
ACM Transactions on Information and System Security, 9, 2006.

4. P. Blackburn and J. van Benthem. Handbook of Modal Logic, chapter Modal Logic:
A Semantic Perspective. Volume 3 of Blackburn et al. [5], 2007.

5. P. Blackburn, J. van Benthem, and F. Wolter, editors. Handbook of Modal Logic,
volume 3 of Studies in Logic and Practical Reasoning. Elsevier, 2007.

6. A. Blass and Y. Gurevich. The logic of choice. The Journal of Symbolic Logic,
65(3), 2000.

7. T. Braüner and S. Ghilardi. Handbook of Modal Logic, chapter First-Order Modal
Logic. Volume 3 of Blackburn et al. [5], 2007.

8. D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transactions
on Information Theory, 29(12), 1983.

9. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge.
MIT Press, 1995.

162

10. M. Fitting. Handbook of Modal Logic, chapter Modal Proof Theory. Volume 3 of
Blackburn et al. [5], 2007.

11. N. Guts, C. Fournet, and F.Z. Nardelli. Reliable evidence: Auditability by typing.
In Proceedings of ESORICS, volume 5789 of LNCS, 2009.

12. A. Haeberlen, P. Kuznetsov, and P. Druschel. The case for Byzantine fault detec-
tion. In Proceedings of the IEEE Workshop on Hot Topics in System Dependability,
2006.

13. A. Haeberlen, P. Kuznetsov, and P. Druschel. PeerReview: Practical accountabil-
ity for distributed systems. In Proceedings of the ACM Symposium on Operating
Systems Principles, 2007.

14. J. Y. Halpern and Y. Moses. Knowledge and common knowledge in a distributed
environment. Journal of the ACM, 37(3), 1990.

15. R. Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely. Towards a theory of account-
ability and audit. In Proceedings of ESORICS, volume 5789 of LNCS, 2009.

16. M. Joye and G. Neven. Identity-Based Cryptography. IOS Press, 2009.
17. R. Kailar. Accountability in electronic commerce protocols. IEEE Transactions

on Software Engineering, 22, 1996.
18. S. Kramer. Reducing provability to knowledge in multi-agent systems. In Proceed-

ings of the LiCS-affiliated Intuitionistic Modal Logics and Applications Workshop,
2008. ftp://ftp.research.microsoft.com/pub/tr/TR-2008-90.pdf.

19. S. Kramer, R. Goré, and E. Okamoto. Formal definitions and complexity results for
trust relations and trust domains. In Proceedings of the ESSLLI-affiliated Workshop
on Logics in Security, 2010.

20. S. Kramer, R. Goré, and E. Okamoto. Formal definitions and complexity results
for trust relations and trust domains fit for TTPs, the Web of Trust, PKIs, and
ID-Based Cryptography. Logic Column of ACM SIGACT News, March 2010.

21. S. Kremer and J.-F. Raskin. Game analysis of abuse-free contract signing. In
Proceedings of the IEEE Computer Security Foundations Workshop, 2002.

22. C. E. Landwehr. A national goal for cyberspace: Create an open, accountable
internet. IEEE Security & Privacy, 7(3), 2009.

23. N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.
24. P. Maniatis and M. Baker. Secure history preservation through timeline en-

tanglement. In Proceedings of the USENIX Security Symposium, 2002. http:
//www.usenix.org/events/sec02/full_papers/maniatis/maniatis.pdf.

25. J.-J. Meyer and F. Veltnam. Handbook of Modal Logic, chapter Intelligent Agents
and Common Sense Reasoning. Volume 3 of Blackburn et al. [5], 2007.

26. F. B. Schneider. Accountability for perfection. IEEE Security & Privacy, 7(2),
2009.

27. F. Stulp and R. Verbrugge. A knowledge-based algorithm for the internet trans-
mission protocol (TCP). Bulletin of Economic Research, 54(1), 2002.

28. A. R. Yumerefendi and J. S. Chase. The role of accountability in dependable
distributed systems. In Proceedings of the IEEE Workshop on Hot Topics in System
Dependability, 2005.

163

A Formal proofs

Table 4. Accountability soundness

1. (E, i) ∈ Eω × N hyp.
2. (E, i) |= A1 hyp.
3. a ∈ A hyp.
4. j ≥ i hyp.
5. (E, j) |= correct(a) hyp.
6. there is M ∈M s.t. (E, j) |= a k M ∧M decisiveLog a 2, 3, 4
7. M ∈M and (E, j) |= a k M ∧M decisiveLog a hyp.
8. (E, j) |=M : correct(a) ∨M : ¬correct(a) 7
9. (E, j) |= ¬(M : ¬correct(a)) 5

10. (E, j) |=M : correct(a) 8, 9
11. (E, j) |= a k M 7
12. (E, j) |= Pa(correct(a)) 10, 11
13. (E, j) |= Pa(correct(a)) 6, 7–12
14. (E, j) |= correct(a)→ Pa(correct(a)) 5–13
15. (E, i) |= �(correct(a)→ Pa(correct(a))) 4–14
16. (E, i) |= ∀a�(correct(a)→ Pa(correct(a))) 3–15
17. (E, i) |= Soundness 16
18. (E, i) |= A1→ Soundness 2–17
19. A1⇒ Soundness 1–18

164

Table 5. Accountability completeness

1. (E, i) ∈ Eω × N hyp.
2. (E, i) |= A2 ∧ A3 hyp.
3. a ∈ A hyp.
4. j ≥ i hyp.
5. (E, j) |= faulty(a) hyp.
6. b ∈ A hyp.
7. there is M ∈M s.t.

(E, j) |=M filedLog a ∧�(M : faulty(a)) 2[A2], 3, 4, 5
8. M ∈M and (E, j) |=M filedLog a ∧�(M : faulty(a)) hyp.
9. (E, j) |=M filedLog a 8

10. (E, j) |= ♦(b k M) 2[A3], 6, 9
11. (E, j) |= ♦�(b k M) 6, 10, Lemma 1
12. (E, j) |= �(M : faulty(a)) 8
13. (E, j) |= ♦�(M : faulty(a)) 12
14. (E, j) |= ♦�((M : faulty(a)) ∧ b k M) 11, 13
15. (E, j) |= ♦�∃m((m : faulty(a)) ∧ b k m) 14
16. (E, j) |= ♦�Pb(faulty(a)) 15
17. (E, j) |= ♦�(b canExpose a) 16
18. (E, j) |= ♦�(b canExpose a) 7, 8–17
19. (E, j) |= ∀b♦�(b canExpose a) 6–18
20. (E, j) |= faulty(a)→ ∀b♦�(b canExpose a) 5–19
21. (E, i) |= �(faulty(a)→ ∀b♦�(b canExpose a)) 4–20
22. (E, i) |= ∀a�(faulty(a)→ ∀b♦�(b canExpose a)) 3–21
23. (E, i) |= Completeness 22
24. (E, i) |= (A2 ∧ A3)→ Completeness 2–23
25. A2 ∧ A3⇒ Completeness 1–24

165

B Case study

In this section, we illustrate the applicability of our framework on the principled,
real-world case study of the Distributed Book-Keeping (DBK) design pattern.
Our case study is real-world in the sense that the intuition of the design pattern
is already implicit in the design of Byzantine Fault Detection [12] and in its im-
plementation, the PeerReview system [13]. The case study is meant to exemplify
how to distil the declarative essence of an accountable distributed system in our
multi-modal, model-theoretic framework.

B.1 The Distributed Book-Keeping design pattern DBK

Distributed Book-Keeping (DBK) is a design pattern for accountable distributed
systems, which we define hereafter in terms of a distributed accounting daemon.

DBK is the analogue for distributed systems of Fra Luca Bartolomeo de
Pacioli’s (1446/7–1517) codification of the Venetian double-entry book-keeping
principle for financial transactions. In DBK, the analogue of a financial trans-
action is a message-passing communication, and the analogue of a crediting or
debiting account entry is a sending- or receiving-event log entry, respectively.
More precisely in DBK, the sending or receiving of a data message by an agent
must match the immediate sending of an adequate log message of the corre-
sponding quoted data-message event to the other agents. (Bear in mind that
we cannot transmit events as such, i.e., without quotation. After all, a sending
or reception event symbolises the very transmission of a message. Thus we do
need to marshal/serialise events for their own transmission, which is what their
quotation symbolises.) DBK is a design pattern in the sense that DBK delegates
the specification of the following control and data refinements to designs:

– resolution of non-determinism (e.g., scheduling of broadcasts)
– utilisation of storage (e.g., choice of data structures)
– computational efficiency (e.g., hashing).

The designs in turn delegate the realisation of these specifications to implemen-
tations.

However, what DBK does specify is the definition of the predicate correct,
and it does so by means of the distributed accounting daemon shown in Table 6,
as follows:

(E, i) |= correct(a) :iff (E�i)↓a is compatible with Accounting-Daemon(a),

where to be compatible with agent a’s accounting daemon means for the finite
trace (E�i)↓a to exhibit the event S(a, L′, c) (generated by the action send(L’,
c)) whenever a WHEN-guard applies at its currently inspected position — for all
positions (cf. Appendix B.3 for a formal definition in terms of a quadratic-time
functional program).

Accounting-Daemon employs the following notable programming constructs:

166

Table 6. Distributed accounting daemon

PROGRAM Accounting-Daemon (a : agent) {
LOOP SUCH-THAT (b : agent) AND (D : data) {

WHEN sends(a, sign(D, a), b) {
FOR EVERY agent c EXCEPT {a,b} {

CHOOSE log L SUCH-THAT adequateLog(L’, a) {
send(L’, c)

} WHERE L’ = sign((quote(S(a, sign(D, a), b)), L), a)
}

}
WHEN receives(a, sign(D, b)) {

FOR EVERY agent c EXCEPT a {
CHOOSE log L SUCH-THAT adequateLog(L’, a) {

send(L’, c)
} WHERE L’ = sign((quote(R(a, sign(D, b))), L), a)

}
}

}
}

– sends(a, sign(D, a), b) and receives(a, sign(D, b)), in logical no-
tation sends(a, [D]a, b) and a receives [D]b, respectively

– the declarative programming abstraction CHOOSE—SUCH-THAT for storage
utilisation, which we use as an analogue in our programming setting of
Hilbert’s choice operator in logical settings (cf. [6], where this operator is
also mentioned as a specification construct in Abstract-State-Machine pro-
grams), e.g., “CHOOSE x SUCH-THAT P (x)” chooses an x such that x has the
property P

– adequateLog(L’, a), in logical notation L′ adequateLog a, whose truth
condition relies on the two parameters of our framework, namely:
1. the set (and function) L of (an agent’s) well-formed logs, which for all
ε ∈ E and a ∈ A we fix as

L 3 L ::= [“ε”]a | [(“ε”, L)]a

2. the obvious function J·K : L → E∗ transcribing log messages to event
traces.

Observe that inside the accounting daemon, the sending of a log that is complete
a priori (i.e., before sending) immediately entails its incompleteness a posteriori
(i.e., after sending). In other words, sending a log that is also complete a posteri-
ori is impossible due to Russel’s paradox — the log would have to contain itself.
(This state of affairs will motivate the introduction of semi-decisive logs in the
next section.) Hence without further ado, we have the following two validities,
and thus pieces of common knowledge among agents (cf. Proposition 1.3).

167

Fact 2 (Intrinsic incompleteness of committed logs) For all agents a 6=
b and messages M :

1. |= a logs M → ¬(M completeLog a)
2. |= (b k M ∧M wfLog a)→ ¬(M completeLog a)

Whence the following two corollaries with practical impacts on the programming
of accountable distributed systems and the philosophy thereof.

Corollary 1 (The purpose of audit). An agent’s correctness can only be
proven by that very agent itself outside the accounting daemon, e.g., within the
protocol of a meta- or auditing daemon, which is why the addition of an auditing
daemon is desirable.

Corollary 2 (Falsifiability of agent correctness). The other agents must
content themselves with the possibility of proving an agent’s faultiness if so,
i.e., the accounting daemon exactly provides falsifiability in the sense of Pop-
per’s critical rationalism, namely Popper’s dictum that a hypothesis (here, agent
correctness) should be falsifiable in the sense that if the hypothesis is false then
its falsehood should be cognisable (here, by another agent).

Further observe that Accounting-Daemon only logs sent and received data but
not log messages because logging log messages would entail an explosion in
network traffic, and thus immediately saturate the network bandwidth. How-
ever, it is conceivable to refine Accounting-Daemon with bounded logging of log
messages, which would induce logging degrees, which in turn would induce de-
grees of mutuality of knowledge between agents. Recall that mutuality of knowl-
edge between agents can be expressed with nested knowledge modalities (e.g.,
Ka(Kb(Ka(φ)))), but that the evaluation of the truth of the resulting formulae
requires the communication of at least one acknowledgement per nesting be-
tween the agents. Ultimately, logging degrees induce degrees of accountability
since accountability is defined in terms of provability, which in turn is defined in
terms of knowledge (cf. Table 2).

Finally note that Accounting-Daemon actually effects a timeline entangle-
ment in the sense of [24], such that the effectuated entanglement is:

– all-to-all, i.e., all agents are to entangle their timelines with all other agents
– data event-driven, i.e., only data sending and reception events are to be

entangled
– all-inclusive, i.e., all other agents’ logs are to be included in an agent’s own

logs.

For details on timeline entanglement, see [24].

B.2 Results

DBK yields the discharge of Assumption A1 as Corollary 4 by way of Corollary 3
and Lemma 2.

168

Lemma 2. |= ∀a�∃m(a k m ∧m adequateLog a)

Proof. By inspection of the definition of k and adequateLog.

Corollary 3. |= ∀m∀a(m adequateLog a→ m decisiveLog a)

Proof sketch 1 By induction over the structure of logs L ∈ L employing dis-
junction of the contrary cases for a ∈ A to be or not to be correct.

The base case is

|= [“ε(a)”]a adequateLog a→ [“ε(a)”]a decisiveLog a ,

and the inductive case is

|=
(
[(“ε(a)”, L)]a adequateLog a

∧ L decisiveLog a

)
→ [(“ε(a)”, L)]a decisiveLog a .

Corollary 4. |= A1

Proof. By Lemma 2 and Corollary 3.

Hence,
|= Soundness.

That is, our distributed accounting daemon ensures soundness. (Dually, a dis-
tributed auditing daemon encourages completeness.)

Finally, DBK yields the conditional discharge of Assumption A2 as Corol-
lary 6 by way of Lemma 4 and Corollary 5 from Lemma 3. (Recall from Sec-
tion 2.2 that the assumptions for accountability completeness cannot be fully
discharged by proof.)

Lemma 3. |= ∀a(correct(a)→ ∀m(m filedLog a→ m soundLog a))

Proof. By inspection of the definition of correct.

Corollary 5.

|= ∀m∀a�(m filedLog a→ m semiDecisiveLog a)

where m semiDecisiveLog a := ¬(m soundLog a)→ m : faulty(a).

Proof. See Table 7, where: (1) Line 8 follows from Lemma 3 and the necessitation
law (N) for Kb (cf. Proposition 1). (2) Line 12 follows from Line 5 and 6, and the
facts that (2.1) logs (e.g., M) bear the signature of their generator (here a, thus
(E, j) |= Kb(M filedLog a)), and (2.2) unsound logs (here M) in a given system
state (here (E, j)) of the system execution tree remain unsound in any other (in
particular ≈b-accessible) state of the same tree (thus (E, j) |= Kb(¬(M soundLog
a))). (3) Line 13 and 14 follow both from Line 11 and 12 by Kripke’s law (K)
for Kb (cf. Proposition 1). (4) Common knowledge in Line 15 follows from the
fact that the form and effect of logs is (pre-established) common knowledge.

169

Table 7. The accounting daemon forces semi-decisive logs

1. (E, i) ∈ Eω × N hyp.
2. M ∈M hyp.
3. a ∈ A hyp.
4. j ≥ i hyp.
5. (E, j) |=M filedLog a hyp.
6. not (E, j) |=M soundLog a hyp.
7. b ∈ A hyp.
8. |= Kb(∀a(correct(a)→ ∀m(m filedLog a→ m soundLog a))) cf.
9. |= Kb(∀a∀m(correct(a)→ (m filedLog a→ m soundLog a))) 8

10. |= Kb(correct(a)→ (M filedLog a→M soundLog a)) 2, 3, 9
11. |= Kb((M filedLog a ∧ ¬(M soundLog a))→ faulty(a)) 10
12. (E, j) |= Kb(M filedLog a ∧ ¬(M soundLog a)) cf.
13. (E, j) |= b k M → Kb(faulty(a)) 11, 12

14. (E, j) |= KM
b (faulty(a)) 11, 12

15. (E, j) |= CK
(
(b k M → Kb(faulty(a))) ∧ KM

b (faulty(a))
)

13, 14
16. (E, j) |=M :b faulty(a) 15
17. (E, j) |=M : faulty(a) 7–16
18. (E, j) |=M semiDecisiveLog a 6–17
19. (E, j) |=M filedLog a→M semiDecisiveLog a 5–18
20. (E, j) |= �(M filedLog a→M semiDecisiveLog a) 4–19
21. (E, j) |= ∀a�(M filedLog a→ m semiDecisiveLog a) 3–20
22. (E, j) |= ∀m∀a�(m filedLog a→ m semiDecisiveLog a) 2–21
23. |= ∀m∀a�(m filedLog a→ m semiDecisiveLog a) 1–22

Lemma 4. |= ∀a�(faulty(a)→ �(faulty(a)))

Proof. By inspection of the definition of correct.

Corollary 6. If |= ∀a�(faulty(a)→ ∃m(m filedLog a)) then |= A2.

Proof. By Corollary 5 and Lemma 4.

Hence,
If |= ∀a�(faulty(a)→ ∃m(m filedLog a))
then A3⇒ Completeness.

Notice the three different implications.

B.3 Formal definition of agent correctness in DBK

We present a definition of correct in Table 8. For concreteness, our presenta-

170

Table 8. Functional program for the correctness predicate.

1 let rec prefix xs ys =
2 match xs, ys with
3 | x :: xs’, y :: ys’ when x = y ->
4 prefix xs’ ys’
5 | [], _ -> true
6 | _ -> false
7 let msgOf e =
8 match e with S (_, m, _) | R (_, m) -> m
9 let sender e =

10 match e with S (a, _, _) | R (a, _) -> a
11 let rec containsQuoted m =
12 match m with
13 | BaseData _ | Agent _ -> false
14 | Hash m’ | Signed (m’, _) ->
15 containsQuoted m’
16 | Pair (m’, m”) ->
17 containsQuoted m’ || containsQuoted m”
18 | Quoted _ -> true
19 let proj es a =
20 List.filter (fun e -> sender e = a) es
21 let rec wfLog l =
22 match l with
23 | Signed (Quoted(e), _) ->
24 not(containsQuoted (msgOf e))
25 | Signed (Pair(Quoted(e), l’), _) ->
26 not(containsQuoted (msgOf e))
27 && wfLog l’
28 | _ -> false
29 let rec logToTrace l =
30 match l with
31 | Signed (Quoted(e), a) -> [e]
32 | Signed (Pair(Quoted(e), l’), a) ->
33 (logToTrace l’) @ [e]
34 | _ -> raise LogNotFound
35 let soundLog a l es =
36 prefix (proj l a) (proj es a)
37 let completeLog a l es =
38 prefix (proj es a) (proj l a)
39 let adequateLog a l es =
40 soundLog a l es && completeLog a l es
41 let rec findLogs a agents es =
42 if is_empty agents then [], es
43 else
44 match es with
45 | R (c, (Signed (_, a’) as l)) :: es’ when
46 mem c agents && a’ = a && wfLog l ->
47 let ls, es” =
48 findLogs a (remove c agents) es’ in
49 l :: ls, es”
50 | _ -> raise LogNotFound
51 let rec correctIter a agents sofar rest =
52 match rest with
53 | e :: rest’ ->
54 if sender e = a then
55 let sofar’ = sofar @ [e] in
56 let ls, rest” =
57 findLogs a agents rest’ in
58 List.for_all
59 (fun l ->
60 adequateLog
61 a (logToTrace l) sofar’
62) ls
63 &&
64 correctIter a agents sofar’ rest”
65 else
66 correctIter a agents sofar rest’
67 | [] -> true
68 let correct a agents es =
69 try correctIter a agents [] es
70 with LogNotFound -> false

171

Table 9. Data types for the correctness predicate.

1 type basedata = string
2 type agent = string
3 type message =
4 | BaseData of basedata
5 | Agent of agent
6 | Hash of message
7 | Signed of message * agent
8 | Pair of message * message
9 | Quoted of event

10 and event =
11 | S of agent * message * agent
12 | R of agent * message
13 exception LogNotFound

tion uses a functional style and is given in the functional programming language
OCaml. The function defining correct is shown on Line 68. We describe its com-
ponents below.

First, Table 9 declares OCaml data types that represent messages and events
according to Definition 2. We assume that base-data items and agent names
are strings. Messages and events are terms of respective algebraic data types,
which are mutually recursive. We represent (finite) traces by lists of events,
where the head of the list is the first event in the trace. We will use excep-
tions when checking logs, hence a corresponding exception declaration. Next,
we define auxiliary functions. The function msgOf extracts the message from
a given event using pattern-matching, sender returns the sender of a sending
event, containsQuoted tests if a message contains a quoted event Qouted(...)
by recursively traversing the message structure, proj projects a trace onto an
agent’s view using a standard library function that filters out non-local events,
cf. ↓ on Page 7. We check if a message represents a well-formed log using wfLog,
as defined on Page 20. Such logs can be transcribed into events by applying the
function logToTrace, while any attempt to transcribe a message that is not a
well-formed log raises an exception.

The compatibility condition requires that each send and receive event is ad-
equately logged, and the log distribution is required to take place immediately
after the event occurs. The functions soundLog, completeLog, and their com-
position adequateLog are used to compare a logged sequence of events with a
given trace, cf. soundLog, completeLog, and adequateLog in Table 3. They use a
standard function prefix that tests the prefix relation on pairs of lists, which is
applied on projected traces. We find logging events using the function findLogs.
It succeeds if a trace es contains a log event for each agent that is participating in
the system and is required to receive a log according to the accounting daemon.
We assume that agent names are kept in a set agents, which we manipulate
using standard functions is_empty, mem, and remove that check for emptiness,
element membership, and remove an element, respectively. To find a log event
for each participating agent, findLogs scans the trace until it finds a log event
for each participating agent. As a result, findLogs either returns a list of log

172

Table 10. Functional program for the accounting daemon.

1 let adeqLog : message ref = ref (BaseData "")
2 let logSend a m b =
3 adeqLog := Signed (Pair (Quoted (S (a, m, b)),
4 !adeqLog), a)
5 let logRecv a m =
6 adeqLog := Signed (Pair (Quoted (R (a, m)),
7 !adeqLog), a)
8 let send m b = ()
9 let mkLogMsg m = Pair (m, BaseData "log")

10 let isLogMsg m =
11 match m with
12 | Pair (_, BaseData "log") -> true
13 | _ -> false
14 let onSend a m b agents =
15 match m with
16 | Signed (m’, a’) when
17 a = a’ && not(isLogMsg m’) ->
18 logSend a m b;
19 List.iter
20 (fun c ->
21 if c <> a && c <> b then
22 send
23 (mkLogMsg !adeqLog) c
24) agents
25 | _ -> ()
26 let onReceive a m agents =
27 match m with
28 | Signed (m’, b) when not(isLogMsg m’) ->
29 logRecv a m;
30 List.iter
31 (fun c ->
32 if c <> a then
33 send (mkLogMsg !adeqLog) c
34) agents
35 | _ -> ()

events and the rest of es without the log events, or raises an exception if some
log event is missing.

We check if an agent is compatible with the DBK pattern using the func-
tion correct. It takes an agent name a, a set of participating agents agents
including a and a trace es as inputs. correct iterates over the trace using the
function correctIter, which checks if each event originated by a is treated as
the accounting daemon prescribes by searching for the corresponding log events,
transcribing them and checking for adequacy.

The upper bound on the time complexity of checking agent correctness is
quadratic in the length of the trace. The function correct calls correctIter
for each event occurring in the trace, and each call to correctIter iterates over
such events while checking adequacy of logs.

B.4 A functional implementation of the accounting daemon for
DBK

We present a functional implementation of the accounting daemon in Table 10.
This definition refines the declarative formulation of the distributed account-

173

Pos Agent a Agent b Agent c
1 S(a, [M]a, b)
2 S(a, [“S(a, [M]a, b)” , La]a, c)
3 R(b, [M]a)
4 R(c, [“S(a, [M]a, b)”, La]a)
5 S(b, [“R(b, [M]a)” , Lb]b, a)
6 S(b, [“R(b, [M]a)”, Lb]b, c)
7 R(a, [“R(b, [M]a)” , Lb]b)
8 S(c, [“R(b, [M]a)” , Lb]b)

Fig. 1. Example trace for accounting daemon. We assume that initially agents a and
b locally store logs La and Lb, respectively.

ing daemon shown in Table 6, in particular by implementing the declarative
construct SELECT-SUCH-THAT using a mutable store and its update.

We assume that each agent has a local mutable store adeqLog that is used
to keep the log. An agent can use the functions logSend and logRecv to update
the stored log in order to take into account event sending and receiving, respec-
tively. We assume that agents use the function send m a for sending a message
m to an agent a. In order to avoid logging of logs, as discussed before, we use
messages of a special form for the communication of logs, as facilitated by the
function mkLogMsg.

An agent can implement accountability by executing onSend and onReceive
upon each occurrence of send and receive event respectively.

Figure 1 illustrates the distributed accounting daemon. It presents a trace
in which agents respect the accounting daemon by sending appropriate log mes-
sages. At point 1, the agent a sends a data message to b and logs it by issuing a
logging message at point 2, which is sent to the agent c. Upon reception of the
data message, the agent b issues corresponding log messages, see points 5 and 6.
Note that log messages do not trigger further logging, hence, for example, the
agent c does not send any messages.

174

